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 The analytical stress analysis of rim and spokes flywheels is 
revisited in this paper. A brief survey of mechanical energy 
storage gives a contextualization for the work. Then, the use 
of Castigliano’s theorems for the stress analysis of a rotating 
rim and spokes flywheel is recalled. The origin of widely 
available design formulas is elucidated and their rational is 
discussed. A hitherto unpublished analytical stress analysis 
for a bi-material flywheel is derived and a parametric 
solution is presented and discussed. 

 
Notation 
A   cross section area 
E   Young’s modulus 
g   acceleration of gravity 

I   inertia moment of the cross section 
q   weight per unit length of centerline 
r   radius of rim centerline 
w   load per unit length 
y   length 
α   half of the angle between consecutive spokes 
γ  weight per unit volume 
ω  flywheel rotational speed 
1 subscript associated with spokes (except where noted) 

 

1. Introduction 
This paper is organized as follows: a concise survey of flywheels is presented in the 
introductory section; in the next section the analytical stress analysis for rotating rim and 
spokes flywheels is recalled. Then a detailed example is worked out, and finally the analytical 
solution for the bi-material case is derived and the origin of a practical formula is elucidated. 
Given their laborious nature, analytical derivations are mainly included in two appendixes. 
Historical note and outlook 
A flywheel stores rotational kinetic energy. The flywheel accelerates when it accumulates 
energy and decelerates when delivering its accumulated energy. Rotational kinetic energy is 
proportional to moment of inertia about the axis of rotation, and this favors rim and spokes 
compared with compact disc solutions. 
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Many textbooks present the basic Mechanics of flywheels, see e.g. Mata et al. (Mata 2016). A 
treatise on flywheels (one of the few textbooks solely dedicated to these machine elements) 
is due to Genta (Genta 1985). A presentation of the stress analysis of rotating discs is given 
e.g. by Vullo and Vivio (Vullo and Vivio 2013). 
Given the potentially disastrous consequences of their failures, flywheels are among the first 
machine elements object of detailed analysis, see e.g. Kimball and Barr (Kimball and Barr 1909) 
by Kimball (past ASME president) and Barr, or Kent in ASME Transactions (Kent 1895). Among 
the pioneers of this field, Pippard's article (Pippard 1924) containing a discussion by 
Longbottom (Longbottom 1924) should be mentioned. 
As technology evolved, flywheels have found - and have lost – applications: recall the steam 
engine, or presses where flywheels are dismissed as servo presses gain market share, or the 
internal combustion engine soon to be replaced for the sake of decarbonized mobility. 
Nevertheless, irrespective of varying specific market opportunities, the need for ever more 
strict energy management procedures ensures the continued interest in energy storage 
systems (ESS). 
Situations where energy is wasted in useless forms if not recovered for useful application, are 
a feature of everyday life. Flywheel energy storage systems (FESS) are a possible answer in a 
variety of sectors, including construction equipment, cranes, space, transportation, grid, etc. 
Comprehensive literature reviews discuss trends (Liu and Jiang 2007) and list industrial 
applications, see e.g. Hedlund et al. focused on automotive applications (Hedlund, Lundin, de-
Santiago, Abrahamsson, and Bernhoff 2015), Babuska et al. focused on space (Babuska, 
Beatty, deBlonk, and Fausz 2004), and Amiryar and Pullen focused on grid applications, 
(Amiryar and Pullen 2017). Flywheels as alternatives to electrochemical batteries have been 
studied by EPRI for long, e.g. (Richma 1997). For energy storage technologies as batteries, 
flywheels etc., discharging time versus power is a relevant aspect for their characterization, 
e.g. (Akhil 2015), (AL-Shaqsi, Sopian, and Al-Hinai 2020), (Chen, Cong, Yang, Tan, Li, and Ding 
2009), (Pärnamäe 2020), another being energy density vs. power density, e.g. (Luo, Wang, 
Dooner, and Clarke 2015), (Ibrahim, Ilinca, and Perron 2008). 
Examples of current industrial developments involve very high speeds made possible by the 
use of carbon fibres (Kitade 2000), advanced tribological solutions for bearings, rotation under 
vacuum and enhanced safety measures against catastrophic failure, e.g. Ricardo PLC 
(RICARDO PLC 2011), Beacon Power (Beacon Power 2018) and others. PUNCH Flybrid KERS 
(kinetic energy recovery systems) were used e.g. in formula 1, (Buchroithner 2019), (PUNCH 
Flybrid 2022), (Buchroithner 2018). Several current applications are discussed in detail in a 
special issue of the journal Energies (Pullen 2021). Even The Economist magazine devoted 
attention to the subject (The Economist 2011) ! 
Rim and spoke flywheels 
As a result of rotational speed ω  rad/s, the circumferential stress in a ring is 

( )2
0 r

g
γσ ω=  (1) 

This solution also concerns a rim whose deformation is unaffected by spokes. In this case, the 
rim does not undergo bending, but only increases the perimeter and therefore the radius; 
circumferential strain would be 

( )20 1 r
E E g
σ γε ω= =  (2) 
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and increase in radius r rε∆ = . Conversely, inextensible rays would lead to the existence of 
bending only, caused by a uniformly distributed load per unit of arc length, of value 

2qw r
g
ω=  (3) 

For this situation, a readily available solution for a beam of length l built-in at both ends, 
subjected to load per unit length w , e.g.  (Budynas and Nisbett 2011), 

( )2 26 6
12
wM lx x l= − −  (4) 

being 
2

max 12
w lM ×

=  (5) 

and 
2

max
min 2 24

M w lM ×
= =  (6) 

Now the stress varies along the arc, assuming the highest value for the section corresponding 
to a spoke, where the bending moment is 2

max 12M w l= ×  and the local maximum stress is 

max maxM y
I

σ =  (7) 

where I is the inertia moment of the rim cross section and maxy the longest distance from the 
neutral axis, in the cross section. 
These two limit cases are described for example, in Collins et al. (Collins , Busby, and Staab 
2010). Both are approximations that try to avoid the real resolution of the problem, in which 
the interaction between the ring and the spokes must be modeled, leading to the ring being 
subject to bending and axial load. 
The maximum stress on the rim is the sum of the circumferential stress due to normal effort 
and bending. The values of one and the other depend, of course, on the increase in length of 
the spokes; if this is such that the rim deforms freely, then the rim does not bend; if the spokes 
are inextensible, then the rim will be subject to bending only. For an intermediate spoke 
extension value, the rim will be in equilibrium partly due to normal effort and partly due to 
the restrictive action of the spokes. Since the expansion of the rim is directly proportional to 
the expansion of the spokes, then the rim stress due to normal effort is also proportional to 
the extension of the rays. If, for example, the spokes suffer 1/3 of the increase in length 
required for free expansion of the ring, then the bending stress will be proportional to 2/3 of 
the centrifugal force on the ring. 
Pioneering studies by Lanza (Lanza 1895) suggest that the stress state of a flywheel of this type 
can be roughly estimated as resulting from ¾ of the stress corresponding to the free expansion 
of the rim, plus ¼ of the stress corresponding to the bending assuming inextensible spokes. 

( )2 max max3 1
4 4

M yr
g I
γσ ω   = +   

   
 (8) 
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This traditional approach, e.g. Faires (Faires 1980), is still sometimes used, see e.g. Khurmi, 
Gupta (Khurmi and Gupta 2005) and Lingaiah (Lingaiah 2004). 

2. Recall of the basic analysis 
For those interested in the history of science and technology, it is interesting to know of 
Castigliano’s fight to ensure recognition of authorship of his theorems (Kardestuncer 1978), 
which are the object of continuing attention, e.g. (Dahlberg 2004). 
In the many editions of his book ‘Strength of Materials', e.g. (Timoshenko 1969), Timoshenko 
presents a solution for stress analysis of flywheel consisting of a rim and spokes based on the 
use of Castigliano's theorems. In (Timoshenko 1969) the solution is credited to others as 
Longbottom (Longbottom 1924). Figure 1 shows the notation used, noting that the angle 
between two consecutive spokes is 2α . The angle ϕ  is counted from the bisector between 
two rays and assumes values 0 ϕ α≤ ≤  . 

 
Figure 1. Centerlines of rim and spokes; notation. Dashed black lines represent 

bisectors between spokes. Full black lines represent spokes. 

Remember that the centrifugal force per unit length of rim is ( ) 2q g rω . 

Cross sections of the rim corresponding to bisector locations will be subjected to normal effort 
0N  and bending moment 0M , but given symmetry suffer no rotation or shear effort, Figure 

1. X  being the force that connects the spoke and the ring, the equilibrium of forces in the 
vertical direction is: 

2 2 2

0 02 sin 2 sin 0
2sin

q r q r XN X r N
g g
ω ωα α

α
+ − = → = −  (9) 

In a generic cross section characterized by the angle ϕ  (section mn) counted from a bisector, 
there will be normal effort N , the calculation of which is facilitated by Figure 2. 

2 2 2

0
coscos 2 sin sin

2 2 2sin
q r q r XN N r

g g
ω ϕ ϕ ω ϕϕ

α
     = + = −          

 (10) 
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2

2

2 sin
2

qR r r
g

qw r
g

ϕ ω

ω

 = × 
 

=
 

Figure 2. The inertial force per unit length of the rim (w) is schematically represented in grey, and 
for the angle ϕ considered its resultant is R. ϕ is counted from the bisector between spokes. 

Figures 3a and 3b help to clarify that in a generic cross section mn characterized by the angle 
ϕ  the bending moment will be 

( )
2 3

2 2
0 0 01 cos 2sin sin

2 sin 2
q r XrM M N r M

g
ω ϕ ϕϕ

α
   = − − + = +   
   

 (11) 

 

( )
( )

( )
( )( ) ( )0 0

cos
cos

cos

cos

dd
r r d

d r r

M N r r M f R

ϕ
ϕ

ϕ

ϕ

=
+

= −

= − − + +

 

a - Calculation of bending moment in section mn (ϕ ) due to 0N . 

 

( )

2

0 0

2 sin sin
2 2

qM r r r
g

M f N

ϕ ϕω    = × × +   
   

+ +
 

b – Calculation of bending moment in section mn (ϕ ) due to centrifugal force 
acting on the rim. M0 and N0 exist at the bisector section. 

Figure 3. Bending moment in section mn characterized by angle ϕ. 



Bi-material Flywheels and Castigliano’s Theorems: a Case Study 
Paulo M. S. T. de Castro 

Journal on Mechanics of Solids, 1:1 (2022) 39-59 44 

The values of 0M  and of X  can be calculated in this indeterminate elastic structure using 
Castigliano's theorem. For this, it is necessary to calculate the elastic deformation energy in 
the ring, 1U  , and in the spoke, 2U  . Considering one spoke and the corresponding rim length 
from -α  to +α, 

2 2

1 0 0
2 2

2 2
M rd N rdU

EI EA
α αϕ ϕ

= +∫ ∫  (12) 

As for the spoke, it is necessary to calculate the normal effort 1N  for any distance ρ  to the 
center of the flywheel, see Figure 4, resulting: 

( )
2

2 21
1 2

qN X r
g
ω ρ= + −  (13) 

and 
2

1
2 0

12
r N dU

EA
ρ

= ∫  (14) 

 

 

21
r qY d

gρ
ω ρ ρ= ⋅∫  

Figure 4. Calculation of normal effort in the rotating spoke. 

The rotation in the section where 0M  acts is null. As for the internal force X , it ensures that 
the spoke does not separate from the ring (Pippard 1924), resulting, as shown in Annex 1: 

( )

( )

1 2
0

1 2

0

0

U U
M

U U
X

∂ + =∂

∂ + =∂

 (15) 

Figure 5 shows schematically the deformation, and is interpreted in Figure 6, (e.g., Rötscher 
1929), where Kρ  is the increase in the radius of the rotating rim if free from the action of the 
spokes, and Aλ  is the increase in radius of the spoke if unconnected to the rim. 
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Figure 5. Schematical representation of the deformation of centerlines of rim and of 

spokes. Notice the expected changes of the bending moment sign between two spokes. 

 
Figure 6. Schematical representation of the deformed centerline of rotating rim if unconnected to 

spokes (dashed arc of circle of radius Kr ρ+ ). Aλ : extension of rotating spokes if unconnected to rim. 

As a result of the analysis detailed in Annex 1, 0M  and X  are: 

0
1 1

2 sin
XrM

α α
 = − − 
 

 (16) 

 

( ) ( )

2 2

2

2 1
1

2 1
3

q rX
Ar Ag f f
I A

ω

α α
=

+ +
 

(17) 

where 

( ) ( )
1 2

sin 21
2sin 4 2

f
α αα

α
 

= + 
 

 (18) 

 

( ) ( )
2 2

sin 21 1
2sin 4 2 2

f
α αα

α α
 

= + − 
 

 (19) 

3. One detailed example 
The analysis will be illustrated using data and expanding the presentation from (Timoshenko 
1969): steel flywheel with 6 spokes rotating at 62.83 rad/s, radius of the centerline of the rim 
cross sections r=1500 mm, square cross section of the rim 300 mm × 300 mm, cross section 
area of each spoke assumed constant and equal to 2

1 15000 mmA = . Specific weight γ=7850 
kgf/m3 and g=9.8 m/s2 are assumed. If the spokes do not limit the deformation of the ring (i.e., 
the ring deforms freely), 
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( )2 2
0 69.82 Nmmr

g
γσ ω −= =   

If the spokes constrain the deformation of the ring, we can consider two cases: totally rigid 
spokes, or deformable spokes. The first situation is a limit case not occurring in practice but of 
interest for comparison. 
Consider the limit case of the inextensible spokes. The problem is equivalent to that of a beam 
of length l rα=  built-in at both ends, subject to a uniformly distributed load per unit of beam 
length: 

2 4187 N/mm=q r w
g
ω =   

For this situation (Budynas and Nisbett 2011), 

( )2 26 6
12
wM l x x l= × × − × −   

The evolution of the moment is represented in Figure 7, where ϕ  is counted from a spoke. 

 
Figure 7. Bending moment versus ϕ. Inextensible spokes. 

The evolution of the maximum and minimum stress along the arc is given in Figure 8. 

 
Figure 8. Stress in the ring versus ϕ , inextensible spokes. Black: inner fiber; red: outer fiber. 
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Figure 9 shows the evolution of the maximum positive values in each section. (Figure 9 consists 
of the positive part of the data in Figure 8). 

 
Figure 9. Rim stress versus ϕ , inextensible spokes. 

Considering the deformation of the spokes, i.e., the rigorous analysis recalled before, leads to 
the evolution of moment represented in Figure 10, and of maximum stress in Figure 11. 

 
Figure 10. Bending moment versus ϕ . Deformable spokes. 
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Figure 11. Rim stress, deformable spokes. 

Now the total stress results from the bending effect (see above), and the normal effort (which 
did not exist in the extreme case of rigid spokes). Normal effort is 

2 2 cos
2sin

q XN r
g

ϕω
α

= −   

and in Figure 12 it appears to be almost constant, i.e., approximately independent of ϕ  (see 
dotted curve). 

 
Figure 12. Stress as a function of bending moment (red); stress resulting from the 

normal effort (dotted line) and total resulting value (black full line). 
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The dependence of maximum stress on the number of spokes was examined for the same 
flywheel. Using the analytical solution recalled above, the maximum stress was calculated in 
the bisector between spokes, and in the ring cross section corresponding to a spoke, see 
Figure 13. 
It is noted that there are other presentations of the subject. Hall et al. (Hall, Holowenko, and 
Laughlin 1961) give a so-called calculation formula, used for example in Akpobi et al. (Akpobi 
and Lawani 2006) and Wang et al. (Wang, Li, and Müller 2009). With manipulation presented 
in Annex 2, that calculation formula can be seen to be derived from the analysis just recalled. 
The use of Lanza's approach, referred to above, would lead to the result: 

( )2 2max max3 1 100.2 Nmm
4 4

M yr
g I
γσ ω −   = + =   

   
  

which differs from the result of the full analysis, 2
max 81.1 Nmmσ −= , by 24%, on the safety 

side since it overestimates stress. 

 
Figure 13 – Stress in the rim as a function of number of spokes. Spoke section – black; 

bisector section – red. Continuous lines: maximum total stress. Dashed lines: stress 
resulting from the normal effort. Dotted lines: stress resulting from the bending moment. 

4. Bi-material flywheels. The effect of spokes’ rigidity 
The reference made to the approximate approach attributed to Lanza (‘rule 3/4, 1/4’, see 
above), raises the curiosity to examine in detail the influence of the stiffness of the spokes. 
The analytical solution recalled (see in particular equations 16 and 17 above), does not allow 
this analysis: it does not admit the possibility of different materials for ring and spokes, and in 
the equations the only reference to spokes is the ratio 1A A  in the denominator of equation 
17. 
To address this issue, it is necessary to go back to an intermediate point in the analysis, 
described step by step in Annex 1, specifically its equation 25. 
We will now admit that the spoke and ring materials have different Young's moduli, rewriting 
the terms that are related to the spokes. We get: 
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2 33 3 2
1

2 1
1 1 1 1

1 0
3

q rXr r q rX Xrf f
EI EAg EA E A E A g

ωω
− + + + =  (20) 

and then, 
2 3 2 3 2 33 2 3 2 3 2

1 1 1

1 1 1 1 1 1
3 3 3

2 1 2 1 2 1
1 1 1 1 1 1

1 1 1
3 3 3

q r q r q rr q r q A r q A E
EAg E A g Eg E g A g g A EX

r r r r A r r A r A E Af f f f f rf r
EI EA E A EI E E A I E A

ω ω ωω ω ω
− − −

= = =
+ + + + + +

  

Considering that 

1 1
1 1 1 1   ;      ;   Aq A q A q q

A
γγ γ
γ

= = =   

 
3 2 2 3 2 2 2 2

1 1

1 1
3 2

2 1 2 1
1 1 1 1

1 1
3 3

r q q r E r q q r E
g g E g g EX

r A E A r A E Af rf r f f
I E A I E A

γ γω ω ω ω
γ γ

− −
= =

+ + + +
 (21) 

and recalling that E and γ  are rim material properties, and E1 and γ1 correspond to the spokes, 
the equation 21 above is a general solution for the analytical stress analysis of a rotating rim 
and spokes bi-material flywheel. 
For the sake of a parametric example, assume now an idealized situation where γ / γ1 = 1 and 
E / E1 may assume values between 0 and 1. In such an idealized situation, 

1 1
1

1

q Aq q q
A A A
= → =   

and 
2 2 2 2

1
2

2 1
1 1

1
3

r q q r E
g g EX

r A E Af f
I E A

ω ω
−

=
+ +

  

We may now examine the effect of spoke stiffness on the general stress distribution, just by 
varying the relationship 1E E . Using the data from the example under consideration, Figure 
14 illustrates the influence of the relationship 1E E  on the bending moment value. The figure 
includes, for comparison, the case of the long straight beam of length 2rα , built-in at both 
ends, and loaded by the centrifugal force ( ) 2q g rω  per unit length. 

Given the assumptions of this example, obviously the curve for 1 1E E =  is equal to the curve 
presented in Figure 10, above. 
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Figure 14. Influence of the ratio 1E E  on the bending moment. Dashed line: case 

of the beam of length 2l rα=  . 6 spokes. 

The solution for 1 0E E =  reflects the situation of rigid spokes, and is also shown in Figure 7. 
It presents a considerable difference in relation to the solution for the straight beam of length 
2rα , built-in at both ends, and subjected to the load ( ) 2q g rω per unit length. The difference 

between the dashed curve and the solution for 1 0E E =  should decrease with increasing 
number of spokes, i.e., the approach based on a straight beam of length 2rα  should be better 
when α decreases. 
Figure 15 repeats the analysis in Figure 14, but now for 10 spokes instead of 6. Clearly the 
rough simple solution considering each rim arc as a beam built in in its ends is now closer to 
the E/E1 = 0 solution, a fact that is due to the greater similarity between the real case and the 
approximation - the curved arc is now closer to a straight line. 
As expected, the difference between the situation of the rectilinear beam of length 2rα  built-
in at both ends (dashed curve), and the solution for 1 0E E =  decreases with increasing 
number of spokes, ie, the approach based on a rectilinear beam is better when α  decreases. 
Situations with more than 10 spokes, not included here, show that the agreement becomes 
even better. 
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Figure 15. Influence of ratio 1E E  on the bending moment. Dashed line: case of 

the beam of length 2l rα=  . 10 spokes. 

Concluding remarks 
− The past and outlook for the use of FESSs was concisely reviewed. 
− The analytical stress analysis for a rotating rim and spokes flywheel based upon 

Castigliano’s theorems was detailed. 
− The analytical stress analysis for a bi-material flywheel is derived, and a parametric 

solution is presented. 
− The origin of widely available design formulas is elucidated and their rational is discussed. 
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Annex 1 
This annex presents the calculation based on Castigliano's theorem, whose final result is 
presented in (Timoshenko 1969). Beginning by 
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and, as previously discussed, 
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The other equation requires much greater attention and time. Being 
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Let us calculate 
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resulting 
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Dividing by r  
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Recalling that, with γ  as specific weight common to rim and spokes, we have, 
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And the result (given in (Timoshenko 1969) in a single line) 
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Annex 2 
Starting from the solution presented in (Timoshenko 1969) with ,b t  as the length of the sides 
of the rim cross section. 
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Recalling that 
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We get 
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we get 
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 (27) 

which is the expression given in (Hall, Holowenko, and Laughlin 1961), (Akpobi and Lawani 
2006), and (Wang, Li, and Müller 2009). 
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