
U.Porto Journal of Engineering, 1:1 (2015) 35-49
ISSN 2183-6493
DOI 10.24840/2183-6493_001.001_0005

Received: 3 January, 2015
Accepted: 12 February, 2015

Published: 1 October, 2015

35

Rectangular Bin-Packing Problem: a computational
evaluation of 4 heuristics algorithms

Duarte Nuno Gonçalves Ferreira1
1Department of Industrial Engineering and Management, Faculty of Engineering University of
Porto, Porto, Portugal (dferreira@fe.up.pt)

Abstract
The Rectangular Bin-packing Problem, also known as The Two-dimensional Bin-
packing Problem (2DBPP), is a well-known combinatorial optimization problem
which is the problem of orthogonally packing a given set of rectangles into a
minimum number of two-dimensional rectangular bins. In this article we benchmark
four heuristics: constructive, based on a First Fit Decreasing strategy, local search
using a greedy packing First-Fit algorithm, Simulated Annealing with multiple cooling
values and Genetic Algorithm. All implementations are written in Python, run using
the Pypy environment and the new multiprocessing module. All implementations
were tested using the Berkey and Wang and Martelo and Vigo Benchmark Instances.

Subject Headings. Optimization, computer programming, operational research.
Author Keywords. Genetic Algorithm, Simulated Annealing, Bin packing problems.

1. Introduction
The Rectangular Bin-packing Problem, also known as The Two-dimensional Bin-packing
Problem (2DBPP) is a well-known combinatorial optimization problem. The 2DBPP is the
problem of orthogonally packing a given set of rectangles into a minimum number of two-
dimensional rectangular bins (Pisinger and Sigurd 2007). It is a Cutting and Packing (C&P)
problem and belongs to the NP-hard type of problems (see (Michael and David 1979)). Cutting
and Packing problems are a recurring subject for articles in optimization literature because of
its wide applications in solving real-world problems. This created a need for a typology to
emerge for C&P problems. Dyckhoff (1990) suggested a typology in 1990 and in 2007,
Wäscher, Haußner and Schumann (2007)proposed an improved typology of C&P problems
which is the one currently used.
From a conceptual point of view, cutting and packing are equivalent terminologies though
researchers often differentiate between bin packing problems and cutting stock problems
along the line so that for a few equal items, the problem is considered a bin packing problem,
while for many equal items, the problem is considered a cutting stock problem (Wäscher,
Haußner, and Schumann 2007). One common aspect in C&P problems is that, typically, small
items have to be packed into, or cut from, one or more large objects (often called bins). There
are in the literature many variations of the basic packing problem, it can be one, two, three or
N-dimensional in nature and the aim might be to maximize the value of the items packed or
minimizing the wasted space. The objects can be heterogeneous, have a regular or irregular
shape and the container or plate for cutting can be limited or infinite.
Exists in the literature some variations, and respective solutions, for the 2DBPP (Berkey and
Wang 1987; Hong et al. 2014; Lodi, Martello, and Vigo 2002). This variations are based on
constraints:

mailto:dferreira@
https://doi.org/10.24840/2183-6493_001.001_0005

Rectangular Bin-Packing Problem: a computational evaluation of 4 heuristics algorithms
Duarte Nuno Gonçalves Ferreira

U.Porto Journal of Engineering, 1:1 (2015) 35-49 36

− We can set a fixed maximum number of bins or set a group of different sized bins
(Alvarez-Valdés, Parreño, and Tamarit 2013; Wei et al. 2013);

− We can limit the orientation of the items or enable a 90º rotation(Blum and Schmid
2013; Sarabian and Lee 2010);

− We can force a guillotine cut1;
− We can impose a cost on each item (Pisinger and Sigurd 2005).
− Lodi et al. (1999)introduce four possible BPP subtypes based on the orientation and

guillotine cut constraints:
− 2DBPP|R|F: Items may be rotated by 90º (R), guillotine cut constraint not imposed (F);
− 2DBPP|R|G: Items may be rotated by 90º (R), guillotine cut constraint is imposed (G);
− 2DBPP|O|F: Orientation of items is fixed (O), guillotine cut constraint not imposed (F);
− 2DBPP|O|G: Orientation of items is fixed (O), guillotine cut constraint is imposed (G).

In this article, on section 2, we will start by introducing the type of two-dimensional bin
packing problem we are going to study. On section 3 we will present the algorithms we are
going to implement and on section 4 we will present the benchmark instances that are used
throughout the literature related to this problem. On section 5 we will discuss our results,
comparing the number of bins and execution times of all algorithms. On section 6 we will do
a brief conclusion of the work and present some future work.

2. Problem Description
In this article we are going to study the Rectangular Bin-packing Problem as stated in the
following description (Pisinger and Sigurd 2007):
Assume that a set ℜ = {1,..., n} of rectangles is given, rectangle ı having width wı, and height
hı. We can use an infinite number of bins to pack the items, each bin has a width W and a
height H. The objective is to minimize the number of bins used to pack all rectangles in ℜ such
that they do not overlap.
Following the Lodi et al. (1999) subtypes we are going to focus on the 2DBPP|O|F, fixed
orientation and no guillotine cut.
For the sake of simplicity from now on, when we refer to 2DBPP in the article, we are referring
to this definition.

3. Solution Approaches
The implementations done in this study follows each heuristic and meta-heuristic
implementation basic ideas from the description of the papers in the literature(Bays 1977;
Kirkpatrick, Gelatt, and Vecchi 1983; Osogami and Okano 2003; Wei et al. 2013). Nevertheless
these implementations are our own work and will most likely give different results concerning
execution time and efficiency, from the ones already found in the literature, due to using
different programming and testing platforms. The implementations are going to be described
in the subsection of each heuristic and meta-heuristic. For this article we are going to test the
implementation of four heuristics to solve the 2DBPP problem: a constructive heuristic, a local
search, a simulated annealing and a Genetic algorithm meta-heuristic. The solutions are
represented by the list of items that was used as input to the packing algorithm. Also all meta-
heuristics used the same packing algorithm, based on a First-Fit Strategy.

1 A guillotine cut splits a block into two smaller blocks, where the slice plane is parallel to one side of the
initial block.

Rectangular Bin-Packing Problem: a computational evaluation of 4 heuristics algorithms
Duarte Nuno Gonçalves Ferreira

U.Porto Journal of Engineering, 1:1 (2015) 35-49 37

3.1. Tables
Our constructive heuristic is based on the First-Fit-Decreasing (FFD) Heuristic(Bays 1977). As
we can see on the Algorithm 1, first the list of pieces is ordered in a non-increasing order and
each piece is set on the first bin it fits. In our implementation we only visit each bin once. We
run through the list of pieces and try to fit each piece in the current bin if the piece fits, we
look for a new piece in the remaining list, to fit in the remaining free space. If there is no piece
on the list that fits, we close the current bin and open a new one, going back to the start of
the piece’s list and repeating the process.

Require: Piece list is sorted by non-increasing order
Ensure: binlist = ∅

While listpieces != ∅ do
For piece ∈ listpieces do

if fitsIn(piece,bin) then
addTo(piece,bin)
removeFrom(piece, listpieces)

End if
End for
addTo(bin,binlist) bin = newBin()

End while
Algorithm 1: First Fit Decreasing

3.2. Local Search
Our Local Search meta-heuristic(Osogami and Okano 2003) which can be seen in the Algorithm
2, starts with an initial solution since we do not have a limit in the number of bins and we can
state that each piece fits completely inside one bin. As we will see in the section 4, any list of
pieces is a feasible solution, the worst case being having one bin for each piece. The possible
initial solution is then tested using a greedy algorithm to position the pieces inside the bins, a
Fit-First packing method. After, we test the neighborhood of the initial solution for a better
solution. If we find a better neighbor, we use it as a starting point for a new neighborhood and
restart the search for a better neighbor until we cannot find a better neighbor.
The neighborhood is defined by switching two random pieces position with each other and a
better neighbor is one that can be packed in a smaller number of bins. A better neighborhood
can also have the same number of bins but the bin that is less filled has a smaller occupied
area than the less filled bin of the current solution. If the less filled bin has a smaller occupied
area than the other, the remaining bins are better packed and we are probably closer to a
solution with less bins.

xn is the initial solution
x∗ = xn
F∗ = Packing (xn)
improvecount = 2 ∗ len(xn)
While improvecount > 0 & time < 60 do

xn+1 = SendRandomToEnd(xn)
If Packing (xn) > Packing (xx+1) then

x∗ = xn+1
F∗ = Packing (xn+1)
xn = xn+1
improvecount = 2 ∗ len(xn)

Else
improvecount− = 1

End if
End while

Algorithm 2: Local Search

Rectangular Bin-Packing Problem: a computational evaluation of 4 heuristics algorithms
Duarte Nuno Gonçalves Ferreira

U.Porto Journal of Engineering, 1:1 (2015) 35-49 38

3.3. Simulated Annealing
The Simulated Annealing(Kirkpatrick, Gelatt, and Vecchi 1983) implementation is the second
meta-heuristics we are going to implement. It consists of a random global search for a better
solution, enabling the selection of a temporary worst solution in the quest to find a better
one. The description of the algorithm can be seen on the Algorithm 3.
Using, as a metaphor, a pan of boiling water, initially the selection of a next solution is chaotic
and so, we can select almost any neighbor to be the center of our new neighborhood, being
it better or worse than the one we have. As time goes by and we iterate through the outer
while loop, we readjust the temperature applying a freezing rate (α) to reduce the chaos in
the selection of the new neighborhood center and narrow our selection. Eventually the
temperature would be so low that the environment would be static and the water would
freeze.
When we reach the limit of iterations without change, or in our case, we reach the execution
time limit, we stop the algorithm.
The neighborhood implementation is the same as with the local search: we swap two pieces
with each other.

xn is the initial solution
x∗ = xn
F∗ = Packing (xn)
Tn = initialTemperature ()
improvecount = 5 ∗ len (xn)
Ln = 2 ∗ len(xn)
While improvecount > 0 & time < 60 do

For k = 1 to Ln do
x = randomNeighbour(xn)
If Packing (xn) >= Packing(x) then

xn = x
If F∗ > Packing(x) then

x∗ = x
F∗ = Packing(x)

End if improvecount = 2 ∗ len(xn)
Else

If radom(0,1) <= p(xn) then
xn = x
improvecount = 2 ∗ len(xn)

Else
improvecount− = 1

End if
End if

End for
update (Ln,Tn)

End while
Algorithm 3: Simulated Annealing

3.4. Genetic Algorithm
The Genetic Algorithm is a meta-heuristic based on the theory of evolution of species by
Darwin(Chu and Beasley 1998). The base of the algorithm is that we have a population of
solutions, in this context called chromosomes, which can evolve into better solutions by using
the same processes that affect every chromosome inside every organism in nature, survival of
the fittest, crossovers and mutations. Through this evolutionary process, the population
evolves towards an optimum solution. The evolutionary process works through three
methods: survival of the fittest; mutations; and crossover of chromosomes.

Rectangular Bin-Packing Problem: a computational evaluation of 4 heuristics algorithms
Duarte Nuno Gonçalves Ferreira

U.Porto Journal of Engineering, 1:1 (2015) 35-49 39

Survival of the fittest means that the better solution in a population has a higher probability
of survival so it has a higher chance of being in the next generation.
Crossover is a process of reproduction where two chromosomes swap part of their
components with each other and create two new chromosomes, each with parts from both
parents. The idea is that by joining two already good solutions we can create a better one.
However, with only this process the population would evolve into a homogeneous population.
This is a bad thing because homogeneous populations are very weak against changes in the
environment. Mutations can help keep the population more heterogeneous. Mutations create
changes in a chromosome, in our case, this can create chromosomes that are different from
the ones already in the population and expand the population with new solutions, better or
worse than the current ones. Thus, this is a mechanism to escape local optima.

g is the total of generations we will test t = 0
Pt is the Population at time t (generation)
x∗ is the best solution
initialize (Pt)
evaluate (Pt)
x∗ = BestPacking (Pt)
While t < g do

t = t + 1
Pt = evolve (Pt−1) evaluate (Pt)
xn = BestPacking(Pt)
If xn < x∗ then

x∗ = xn
End if

End while
Algorithm 4: Genetic Algorithm

4. Benchmark Instances
For this 2DBPP problem there are two benchmark instances or data set generation techniques
that appear the most in literature: Berkey and Wang (1987); and Martello and Vigo(1998).
Pisinger & Sigurd(2005)created some benchmark instances based on this two, Hopper &
Turton(2001) generated their own benchmark instances.
Berkey and Wang Benchmark Instances are divided in 6 classes:

− Class 1 W = H = 10, hı and wı uniformly random in [1, 10];
− Class 2 W = H = 30, hı and wı uniformly random in [1, 10];
− Class 3 W = H = 40, hı and wı uniformly random in [1, 35];
− Class 4 W = H = 100, hı and wı uniformly random in [1, 35];
− Class 5 W = H = 100, hı and wı uniformly random in [1, 100];
− Class 6 W = H = 300, hı and wı uniformly random in [1, 100].

With W and H being the width and the height of the bins and wı and hı the width and height
of a piece ı. The datasets are composed of 5 instances with n pieces (n = 20, 40, 60,
80,100)(Lodi, Martello, and Monaci 2002).
Martello and Vigo Benchmark Instances are divided in 4 classes which are filled with items
from 4 types:

− Type 1 hı uniformly random in [1, H/2], wı uniformly random in [2W/3, W];
− Type 2 hı uniformly random in [2H/3, H], wı uniformly random in [1, W/2];
− Type 3 hı uniformly random in [H/2, H], wı uniformly random in [W/2, W];
− Type 4 hı uniformly random in [1, H/2], wı uniformly random in [1, W/2].

Rectangular Bin-Packing Problem: a computational evaluation of 4 heuristics algorithms
Duarte Nuno Gonçalves Ferreira

U.Porto Journal of Engineering, 1:1 (2015) 35-49 40

As before, W and H are the width and the height of the bins and wı and hı the width and height
of a piece ı. For each item of an instance of Class k (k ∈ {I, II, III, IV }) the probability of an item
being of type k is 70%, and 10% of being of any other type(Martello and Vigo 1998). These
datasets are also composed of 5 instances with n pieces (n = 20, 40, 60, 80, 100) and W = H =
100 (Lodi et al., 2002b).

5. Computational Results
For our study we implemented the four algorithms and tested them against the benchmark
instances from section 4. The tests were made in an Intel Core i7-3517U CPU with 4GB of ram,
using Pypy 32bits runtime2 in Windows 8.1. The runs had a soft limit of 60 seconds, so all
instances could be run in a sensible time frame. The FFD never hit the time limit but all the
others end up reaching the time limit in some of the instances. Without this time limit the
results would have been better but this limit gave enough time to be able to compare the
performance of each heuristic in a feasible time frame.
To take into account the overhead of the JIT3, the Class 1 should have been run for all
algorithms 3 times before running the full experiment and collecting the results. This would
enable the JIT to compile the source code before collecting data. As it was implemented,
running the instances of Class 1 took more time than it should, at least for the FFD
implementation.
The results were computed and compared to one representation of each heuristic and meta-
heuristic, the results are shown in Table 1 and Table 2. In those tables we compare the FFD,
the Local Search with the starting solution in a decreasing order(LSearchD), a Simulated
annealing implementation with an α of 95% and a Genetic algorithm with random initial
population. Looking at tables 3, 4, 7 and 10 we can compare the differences in execution time
between the implementations and is very clear the difference in the results.
The LSearchD execution time greatly increases with the number of pieces as opposed to the
FFD where we see a slower increase. This difference comes from the fact that in LSearchD we
are basically packing every solution in the neighborhood until we find a better neighbor
whereas in the FFD we are only packing one list of items. A similar rule applies to the simulated
annealing and genetic algorithm implementations where we also pack more than one
solution. We do not see a higher impact because of the soft limit on the running time and
number of generations.
Another thing we can clearly see in the results is that the LSearchD results are always the same
or better than the FFD ones, which is due to fact that the packing algorithm and the initial
solution order are the same. So, the initial solution for the LSearchD is the solution for the FFD
with the same instance of the problem.
The results of the simulated annealing should have been the same or better than the Local
Search, and in most cases are. In the cases where that is not the case, for example, Class 3
instance 80 or Class 5 instance 100, if we increase the soft limit we will see at least a solution
as good as the one in local search.
The Genetic algorithm results are also generally better than the local search yet they are most
of the time worse than the simulated annealing. An increase in the number of generations
could improve these results.

2 http://pypy.org/ - PyPy is a fast, compliant alternative implementation of the Python language (2.7.8
and 3.2.5).
3 Just-in-time compilation (JIT), also known as dynamic translation, is compilation done during execution
of a program at run time rather than prior to execution.

Rectangular Bin-Packing Problem: a computational evaluation of 4 heuristics algorithms
Duarte Nuno Gonçalves Ferreira

U.Porto Journal of Engineering, 1:1 (2015) 35-49 41

Table 1: Comparing the number of bins and waste in each algorithm. Class 1-6

Table 2: Comparing the number of bins and waste in each algorithm. Class 7-10

Rectangular Bin-Packing Problem: a computational evaluation of 4 heuristics algorithms
Duarte Nuno Gonçalves Ferreira

U.Porto Journal of Engineering, 1:1 (2015) 35-49 42

5.1. Constructive Heuristic
The constructive heuristic is fast. When comparing the constructive heuristic with the meta-
heuristics used in this study, the FFD is blazing fast. Our implementation of the FFD ranges
from just under nine milliseconds on a Class 1 instance with 60 pieces to 5 seconds in a Class
6 instance with 100 pieces, with most of the runs taking less than 100 milliseconds. Our
implementation is faster in runs where we have big boxes when compared to the size of the
pieces, as seen in Class 2, Class 4 and Class 10.

Table 3: First-Fit Decreasing

5.2. Local Search
For our study we tested the local search algorithm with three different initial solutions, a)
order the given piece’s list in a non-increasing order (LSearchD); b) order the given piece’s list
in a non-decreasing order (LSearchA); and c) randomize the given list (LSearchR).
For each instance class we compare the average number of bins used and the average wasted
space. The result are shown in Table 5 for the Berkey and Wang benchmark set and Table 6
for the Martelo and Vigo benchmark set. The Avg. Waste field shows the average empty area
in the bins and the Time field shows the average time per instance in milliseconds.
As we can see in Table 5 and Table 6 the initial solution really influences the results of the
heuristic. An initial solution in non-increasing order generates the result at least as good as
the FFD heuristic.
The average times of this heuristic are higher than the FFD one and as we can see in Table 4,
they go from 5 milliseconds to a little over 12 seconds, still none of the instances broke the
soft limit of 300 seconds.

Rectangular Bin-Packing Problem: a computational evaluation of 4 heuristics algorithms
Duarte Nuno Gonçalves Ferreira

U.Porto Journal of Engineering, 1:1 (2015) 35-49 43

Table 4: Local Search with Non-increasing Starting Order

Table 5: Comparing three versions of Local Search. Class 1-6

Rectangular Bin-Packing Problem: a computational evaluation of 4 heuristics algorithms
Duarte Nuno Gonçalves Ferreira

U.Porto Journal of Engineering, 1:1 (2015) 35-49 44

Table 6: Comparing three versions of Local Search. Class 7-10

5.3. Simulated Annealing
As we can see in Table 1 and Table 2, the results for the Simulated Annealing were better than
the FFD and the Local Search but these results come at the cost of time. As shown in Table 7,
the average time of each SA is higher than either of the previous ones. The time goes from 1,3
seconds to 74 seconds, hitting the soft limit of 150 seconds per run in 31 out of 50 instance
type.
Since Simulated Annealing is heavily based on a stochastic method to get a new neighbor we
have to run more than once and get the best result. Usually between 10 and 20 random seeds
should be used to get better results. In our case we used 10 random seeds.
The tables 8 and 9 show the comparison in results from 3 different values of α: 90%; 95% and
99%. As explained in section 3 the α is the freezing rate such as a rate of 90% freezes faster
than a rate of 99% where the temperature only decreases 1%. The freezing rate also influences
the time the implementation runs, since it freezes faster, an implementation with α=90% will
end faster than an implementation with α=95%. In our results α=95% is always better or equal
to the results of α=90%. This is due to the fact that since we freeze slower we can accept worse
solutions for longer time. Our results show that the implementation with α=99% sometimes
gives worse results than the implementation with α=95. This happens because the soft time
limit of 300 seconds is probably too small for an α this high. Given enough time, a better
solution than the α=95% would have been found.

Rectangular Bin-Packing Problem: a computational evaluation of 4 heuristics algorithms
Duarte Nuno Gonçalves Ferreira

U.Porto Journal of Engineering, 1:1 (2015) 35-49 45

Table 7: Simulated Annealing for a = 90%

Table 8: Comparing Simulated Annealing with different a. Class 1-6

Rectangular Bin-Packing Problem: a computational evaluation of 4 heuristics algorithms
Duarte Nuno Gonçalves Ferreira

U.Porto Journal of Engineering, 1:1 (2015) 35-49 46

5.4. Genetic Algorithm
As shown in Table 1 and Table 2, Genetic algorithm has generally better results than the FFD
and LSearchD. But when compared to SA the results are a bit worse. The Class 9 problems give
exactly the same results and Class 6, 7 and 8 instances with 100 pieces have on average a
better result with GA, the difference is very small but GA takes almost 10 seconds more, on
average, than the SA algorithm.
Looking at Table 10, we can see that the average time is higher than the remaining heuristics.
We did not impose a time limit as with the SA implementation.
The tables 11 and 12 show the comparison in results from 3 different configurations: a) a
mutation and survivability rates of 10%; b) a mutation rate of 75% and survivability rate of
10%; c) and a mutation rate of 10% and survivability rate of 75%.
We used a fixed number of generations and population size for all configurations, 25
generations and 50 chromosomes per population. The survivability rate is the probability that
a chromosome will be destroyed to create new chromosomes through crossover or will pass
unchanged into the next generation. The mutation rate is the probability of a mutation
occurring in a chromosome. The algorithm we implemented for a mutation was the same we
implemented on the neighborhood function in simulated annealing and local search, we swap
the position of two pieces. All chromosomes can suffer a mutation. The average generation
field is the generation in which the best solution was found.
The results for the GA are very similar in all configurations although the configuration with a
higher mutation rate has, most of the time, a better result than the one with a lower mutation
rate.

Table 9: Genetic Algorithm

Rectangular Bin-Packing Problem: a computational evaluation of 4 heuristics algorithms
Duarte Nuno Gonçalves Ferreira

U.Porto Journal of Engineering, 1:1 (2015) 35-49 47

Table 10: Comparing Genetic Algorithm. Class 1-6

Table 11: Comparing Genetic Algorithm. Class 7-10

Rectangular Bin-Packing Problem: a computational evaluation of 4 heuristics algorithms
Duarte Nuno Gonçalves Ferreira

U.Porto Journal of Engineering, 1:1 (2015) 35-49 48

6. Conclusion
We implemented one heuristic and three meta-heuristic, a constructive, a local search, a
simulated annealing and genetic algorithm to solve the Rectangular Bin Packing Problem. We
analyzed them using the most common Benchmark Sets in the literature for the problem
defined on section 2: Berkey and Wang; and from Martello and Vigo.
One conclusion we can take from the results is that the way we pick the neighborhood in the
local search heuristic is very prone to local optimal so starting with a good solution for our
packing algorithm improves the chances of our heuristic finding a good solution.
In future tests, we could change the formula for the neighborhood and make it less prone to
local optima, either by increasing the neighborhood size or by picking the best neighbor or a
random best instead of picking the first best. In Simulated Annealing we could also increase
the soft limit to 300 seconds and compare the different α’s again, doing so would probably
find a better solution with α=99%. In the case of the Genetic algorithm we could increase the
population size and the generation number to give more time for the population to evolve
and check how it affects the results.
As a final note, the comparison between these heuristics also shows that finding a solution
can be very fast using a constructive heuristic like the First-Fit Decreasing. Improving on the
other hand, can be very resource consuming as in the case of Local Search, Simulated
Annealing and Genetic algorithm, where we already start with one or more feasible solutions.

References
Alvarez-Valdés, Ramón, Francisco Parreño, and José Manuel Tamarit. 2013. “A GRASP/Path

Relinking Algorithm for Two-and Three-Dimensional Multiple Bin-Size Bin Packing
Problems.” Computers & Operations Research 40 (12). Elsevier: 3081-90.

Bays, Carter. 1977. “A Comparison of next-Fit, First-Fit, and Best-Fit.” Communications of the
ACM. DOI: 10.1145/359436.359453.

Berkey, J O, and P Y Wang. 1987. “Two-Dimensional Finite Bin-Packing Algorithms.” Journal of
the Operational Research Society. JSTOR, 423-29.

Blum, Christian, and Verena Schmid. 2013. “Solving the 2D Bin Packing Problem by Means of
a Hybrid Evolutionary Algorithm.” Procedia Computer Science 18. Elsevier: 899-908.

Chu, P.C., and J.E. Beasley. 1998. “A Genetic Algorithm for the Multidimensional Knapsack
Problem.” Journal of Heuristics 4: 63-86. DOI: 10.1023/A:1009642405419.

Dyckhoff, Harald. 1990. “A Typology of Cutting and Packing Problems.” European Journal of
Operational Research 44 (2): 145-59. DOI: 10.1016/0377-2217(90)90350-K.

Hong, Shaohui, Defu Zhang, Hoong Chuin Lau, XiangXiang Zeng, and Yain-Whar Si. 2014. “A
Hybrid Heuristic Algorithm for the 2D Variable-Sized Bin Packing Problem.” European
Journal of Operational Research 238 (1). Elsevier: 95-103.

Hopper, E., and B. C H Turton. 2001. “Empirical Investigation of Meta-Heuristic and Heuristic
Algorithms for a 2D Packing Problem.” European Journal of Operational Research 128: 34-
57. DOI: 10.1016/S0377-2217(99)00357-4.

Kirkpatrick, S, C D Gelatt, and M P Vecchi. 1983. “Optimization by Simulated Annealing.”
Science (New York, N.Y.) 220: 671-80. DOI: 10.1126/science.220.4598.671.

Lodi, Andrea, Silvano Martello, and Michele Monaci. 2002. “Two-Dimensional Packing
Problems: A Survey.” European Journal of Operational Research 141 (2). Elsevier: 241-52.

http://dx.doi.org/10.1145/359436.359453
http://dx.doi.org/10.1023/A:1009642405419
http://dx.doi.org/10.1016/0377-2217(90)90350-K
http://dx.doi.org/10.1016/S0377-2217(99)00357-4
http://dx.doi.org/10.1126/science.220.4598.671

Rectangular Bin-Packing Problem: a computational evaluation of 4 heuristics algorithms
Duarte Nuno Gonçalves Ferreira

U.Porto Journal of Engineering, 1:1 (2015) 35-49 49

Lodi, Andrea, Silvano Martello, and Daniele Vigo. 1999. “Heuristic and Metaheuristic
Approaches for a Class of Two-Dimensional Bin Packing Problems.” INFORMS Journal on
Computing 11 (4). INFORMS: 345-57.

———. 2002. “Recent Advances on Two-Dimensional Bin Packing Problems.” Discrete Applied
Mathematics 123 (1). Elsevier: 379-96.

Martello, Silvano, and Daniele Vigo. 1998. “Exact Solution of the Two-Dimensional Finite Bin
Packing Problem.” Management Science 44 (3). INFORMS: 388-99.

Michael, R Garey, and S Johnson David. 1979. “Computers and Intractability: A Guide to the
Theory of NP-Completeness.” WH Freeman & Co., San Francisco.

Osogami, T., and H. Okano. 2003. “Local Search Algorithms for the Bin Packing Problem and
Their Relationships to Various Construction Heuristics.” Journal of Heuristics 9: 29-49. DOI:
10.1023/A:1021837611236.

Pisinger, David, and Mikkel Sigurd. 2005. “The Two-Dimensional Bin Packing Problem with
Variable Bin Sizes and Costs.” Discrete Optimization 2 (2). Elsevier: 154-67.

———. 2007. “Using Decomposition Techniques and Constraint Programming for Solving the
Two-Dimensional Bin-Packing Problem.” INFORMS Journal on Computing 19 (1). INFORMS:
36-51.

Sarabian, M, and L V Lee. 2010. “A Modified Partially Mapped Multicrossover Genetic
Algorithm for Two-Dimensional Bin Packing Problem.” Journal of Mathematics and
Statistics 6 (2): 157.

Wäscher, Gerhard, Heike Haußner, and Holger Schumann. 2007. “An Improved Typology of
Cutting and Packing Problems.” European Journal of Operational Research 183 (3): 1109-
30. DOI: 10.1016/j.ejor.2005.12.047.

Wei, Lijun, Wee-Chong Oon, Wenbin Zhu, and Andrew Lim. 2013. “A Goal-Driven Approach to
the 2D Bin Packing and Variable-Sized Bin Packing Problems.” European Journal of
Operational Research 224 (1). Elsevier: 110-21.

http://dx.doi.org/10.1023/A:1021837611236
http://dx.doi.org/10.1016/j.ejor.2005.12.047

