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Abstract 
Facial recognition under uncontrolled acquisition environments faces major 
challenges that limit the deployment of real-life systems. The use of 2.5D information 
can be used to improve discriminative power of such systems in conditions where 
RGB information alone would fail. In this paper we propose a multimodal extension 
of a previous work, based on SIFT descriptors of RGB images, integrated with LBP 
information obtained from depth scans, modeled by an hierarchical framework 
motivated by principles of human cognition. The framework was tested on 
EURECOM dataset and proved that the inclusion of depth information improved 
significantly the results in all the tested conditions, compared to independent 
unimodal approaches. 
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1. Introduction
Over the past few years, the issue of face recognition has been in the spotlight of many
research works in pattern recognition, due to its wide array of real-world applications. The
face is a natural, easily acquirable trait with a high degree of uniqueness, representing one of
the main sources of information during human interaction. These marked advantages,
however, fall short when images of limited quality, acquired under unconstrained
environments, are pre-sented to the system.
Whereas technological improvements in image capturing and transmitting equipment
managed to attenuate most noise factors, partial face occlusions still pose a genuine challenge
to automated face recognition (Li et al., 2014).
Facial occlusions may occur due to a multiplicity of deliberate or unintentional reasons.
Whereas accessories, such as sunglasses and scarves, and facial hair represent quite common
sources of occlusion in daily life, they can also be explored by bank robbers and shop thieves
in an attempt to avoid recognition. Furthermore, the use of some accessories might be
enforced in restricted environments (such as medical masks in hospitals and protection
helmets in construction areas) or by religious or cultural constraints (Min et al., 2014a). The
fact that humans perform and rely on face recognition routinely and effortlessly throughout
their daily lives leads to an increased interest in replicating this process in an automated way,
even when such limitations are known to frequently occur.
Even though there is no consensus in the cognitive science field as to how the human brain
recognizes faces, either based on their individual local features or, more holistically, on the
basis of their overall shape, several works have shown that both levels of information play a
non-negligible role in human face perception (Schwaninger et al., 2007, Gold et al., 2012). In
previous works (Monteiro and Cardoso, 2015a,b), the authors explored the global precedent
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hypothesis for human perception as the basis for a new decision strategy to guide the face 
recognition process, in an hierarchical manner, in RGB color images. Such hypothesis claims 
that face recognition is performed by the human brain in a global-to-local flow, with holistic 
information gaining precedence over a more detailed local analysis. 
In the present work, we built upon the aforementioned previous research, incorporating 
information from the three-dimensional structure of the face, through the use of 2.5D depth 
images acquired using the Microsoft Kinect low-cost sensor. By exploring information from an 
extra spatial dimension we aim to grant the original algorithm with higher robustness in 
scenarios, such as critically low illumination, where the acquisition of color images is severely 
limited. With this goal in mind, we performed a detailed analysis of the state-of-the-art works 
on 3D face recognition, in order to identify trends of research to help guide the design of the 
extension of the referred previous works, as well as defining future prospects of research. 
We start by presenting in Section 2 a thorough review of the state-of-the-art concerning the 
evolution of face recognition to 3D scenarios, with special focus to recent works on Kinect 
depth images. We then present, in Section 3, a detailed description of the extension of the 
original hierarchical algorithm to incorporate depth information. The most relevant 
preliminary results are presented and discussed in Section 4, while the main conclusions and 
prospects for future work can be found in Section 5. 

2. State-of-the-art in 3D Face Recognition 
As referred in the previous section, face recognition is a challenging pattern recognition 
problem especially in the presence of variations in illumination conditions, occlusions, pose 
and facial expression changes and disguises. 
Due to the inherent 3D structure of the face, changes in illumination and non-frontal pose 
from the individuals could lead to changes in some facial features, thus conditioning the 
performance of the system. To overcome the decrease of performance in these situations, 3D 
face recognition can be used to improve the recognition rate, giving a more robust facial 
description and not being affected by illumination variation, leading possibly to a greater 
discriminative power. There are two main ways of representing 3D facial structure (Abate et 
al., 2007): the 2.5-Depth images and 3D images. The 3D images retain all the facial geometry 
information, whereas the 2.5D or range images are a bi-dimensional representation of a set 
of 3D points in which each pixel in the 𝑋𝑋0𝑌𝑌 plane stores the depth z value. The disadvantage 
of this representation is that it only takes information from one point of view, allowing only a 
single facial model. Also, the 3D image depends only on internal anatomical structure while 
2.5D scans are affected by environmental conditions and external appearance. Both of these 
representations can increase the performance of recognition algorithms, but it is important 
to evaluate in which type of systems the acquisition of 3D facial data poses a feasible 
challenge. Table 1 lists some of most often used acquisition solutions used in the creation of 
most datasets found in literature. 
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Sensor Type Resolution Working 
Distance Price ($) 

Minolta Sensors 
[Min et al., 2014b] 3D Laser Scanning 0.041-0.22 ∼ 2.5 25000 

3dMDface 
[Min et al., 2014b] Vision Cameras <0.2 —— 10k - 20k 

CyberWare 3030RGB/PS 
[Min et al., 2014b] Low-Intensity Laser Light Source 0.08 - 0.3 0.35 ∼ 72000 

Inspeck Mega Capturer II 
[Hiremath and Manjunatha, 2013] Structured-Light 0.7 1.1 Not 

Available 

Kinect 
[Min et al., 2014b] IR laser Emitter ∼ 1.5 - 50 0.5 - 4.5 149.99 

SoftKinetic DS325 
[Mracek et al., 2014] Diffused Laser 14 at 1 m 

distance 0.15-1 259 

Structure 
[Gutfeter and Pacut, 2015] IR Structured Light 0.5 - 30 3.5 379 

PrimeSense Carmine 
[Min et al., 2012] IR Light Source 0.1 - 1.2 3.5 Not 

Available 
Table 1: List of some sensors used in 3D Facial Recognition 

The offered solutions can be either stereoscopic camera systems, structured light systems or 
laser range systems, obtaining both 3D and intensity information. While the Minolta and 
Inspeck sensors are generic 3D sensors, CyberWare and 3dMD were designed specifically to 
face 3D scanning. All of those solutions are very precise, yet they are also very expensive. The 
natural evolution of the 3D sensors is towards low cost sensors, with a decrease in the 
resolution, that could be used for the creation of real-time systems that are cheap but at the 
same time robust enough to perform face recognition in adverse conditions. Kinect is one of 
the most used sensors, and it contains an infra-red (IR) laser emitter and an IR camera in 
addition to a RGB camera. The RGB camera captures the RGB images directly, whereas the 
laser emitter and IR camera work together to capture the depth map. The depth map is 
obtained via a triangulation process based on those two sensors. First the IR laser projects a 
predesigned pattern of spots in the scene (using a raster) and the reflection of the pattern is 
captured by the IR camera. (Min et al., 2014b) Although the Kinect is the most commonly used 
low-cost sensor for this type of applications SoftKinetic DS325 (Mracek et al., 2014), Structure 
sensor (mobile sensor in tablets) (Gutfeter and Pacut, 2015) and PrimeSense (Min et al., 2012) 
(bought recently by Apple but currently not acquirable) also have been used in some facial 
recognition datasets, being an alternative to the Microsoft sensor. 
Using these sensors, many datasets are available for algorithm testing. All these datasets can 
be divided in two groups: the high-resolution scans that use high-quality and expensive scans 
like Minolta and 3dMDface Systems, and the low-resolution scans that use low-cost sensors 
with lower precision and resolution like Kinect, SoftKinectic and Structure sensors. The 
databases of facial surfaces should have a large variety of subjects and conditions in order to 
simulate the most important challenges in facial recognition (pose, facial expression, 
illumination and occlusion). The information relative to these sensors was obtained from (Min 
et al., 2014b), where most of this sensors and databases were analysed in detail. 
The first datasets created for the 3D facial recognition problem used high precision sensors. 
Some of the most important datasets are the Bosphorus, York, FRGC, GavabDB, Binghamton 
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University, Texas-3D, UMB-DB and 3D-RMA (Abate et al., 2007). All these datasets use 
expensive and high resolution sensors. Alongside the evolution of sensors towards the low-
cost, lower resolution and faster acquisitions, recent databases were also constructed with 
this type of sensors. Some examples are the CurtinFaces (Li et al., 2013), NASK-
StructureFacebase (Gutfeter and Pacut, 2015), BIWI Kinect Head Pose Dataset (Hayat et al., 
2015), UWA Kinect dataset (Hayat et al., 2015), FaceWareHouse (Cao et al., 2014) and 
EURECOM dataset (Min et al., 2014b). Although the number of 2D+3D datasets are still in low 
number comparatively to the 2D datasets, these databases are increasing in number and in 
variety and are fundamental to the testing and assessment of performance of new algorithms. 
The specifications of these datasets are shown on Table 2. 

Dataset Texture 3D 
Sensor Scans Subjects Expression Illumination Pose Occlusion Video 

CurtinFaces 
[Li et al., 2013] Yes Kinect >5000 52 Yes Yes Yes Yes No 

NASK-StructureFacebase 
[Gutfeter and Pacut, 2015] Yes Structure 330 13 No No Yes No Yes 

BIWI Head-Pose 
[Hayat et al., 2015] Yes Kinect >15000 20 No No Yes No No 

UWA Kinect 
[Hayat et al., 2015] Yes Kinect 15000 48 Yes No Yes No No 

FaceWareHouse 
[Cao et al., 2014] Yes Kinect 3000 150 Yes No No No Yes 

EURECOM 
[Min et al., 2014b] Yes Kinect > 450 52 Yes Yes Yes Yes Yes 

Table 2: List of some databases created for the assessment of 3𝐷𝐷 Facial Recognition algorithms 

Through the analysis of the Table 2 we can observe that EURECOM database seems to be the 
most complete database, although the number of scans is limited. A test with different type 
of sensors and conditions is crucial for a construction of a good framework. The generation of 
2.5D or 3D datasets leads to a necessary adaptation of the frameworks designed for 2D images 
to be capable to receive tridimensional information as input. Most of the datasets presented 
above were built due to the need of achieving and objective assessment of how newly 
designed algorithms worked on a variety of new 3D Face recognition problems. There are 
three main types of approaches for this pattern recognition problem: 2D Based, 3D based and 
multimodal. The first type uses synthetic 3D face models to increase the robustness in respect 
to pose variations as well in changes in illumination and facial expression. 3D-based 
methodologies don’t use intensity information and only use 3D or 2.5D data for the 
algorithms. Finally, the multimodal approaches take advantage of information from both 
previous approaches in order to attempt fusion of the first two types described earlier. 
The 2D based approaches were in the genesis of the 3D facial recognition and, although they 
only use a 2D input query face, a 3D model is used to improve the robustness of a system. 
Many approaches like (Blanz and Vetter, 2003), (Lu et al., 2004) and (Hu et al., 2004) in which 
many virtual 3D models are generated to simulate the variations in pose and facial expression. 
The problems with these approaches are the several limitations in constructing a model from 
a single frame, and the non proximity to reality of the generated models. 
The use of methodologies based only on 3D, thus called unimodal, has shown to be a good 
alternative to RGB in conditions of varying illumination, facial expression and pose. The main 
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problem with such approaches concerns the need of a correct alignment of 3D data between 
two face surfaces. In 1992, Besl (Besl and McKay, 1992) introduced the Iterative Closest Point 
(ICP) to perform a correct alignment of facial models. One of the first works with 3D facial 
recognition was introduced by Gordon (Gordon, 1991), based on the calculation of distance 
measures between some regions (like shape of forehead, jaw line, eye corner cavities and 
cheeks). A few years later, Tanaka (Tanaka et al., 1998) proposed a curvature-based approach. 
By extracting the principal curvatures and their orientations in a facial model, some features 
are extracted and mapped on two unit spheres Extended Gaussian Images (EGI). Chua (Chua 
et al., 2000) found some regions (nose, eye socket and forehead) and a Point Signature two-
by-two comparison among different facial expressions of the same person and similarity 
measure is used with a rank vote process using a training indexed table. The Local shape 
descriptors in these type of scans were introduced by Moreno (Moreno et al., 2003) where 
different regions are segmented using the median signs and the Gaussian curvatures, isolating 
regions with significant curvatures. Some features are extracted (areas, distances, angles, area 
ratios, mean of areas, mean curvatures, variances, etc.) in order to achieve a good description 
of these regions. In recent works, Rui Min (Min et al., 2012), using the Apple PrimeSense, 
proposed a canonical face based system using only frontal pose images. The facial region 
obtained is divided on nose, eye region, cheeks and the remaining parts (each region is 
associated with a respective weight). A feature vector is formed containing the L2 distances 
between each facial region and their corresponding areas. Naveen (Naveen and Moni, 2015) 
in FRAV3D database proposed the use of 2D spectral and 2D spatial domain information to 
solve the problem of facial recognition, based on 2D DWT (Discrete Wavelet Transform) and 
2D DCT (Discrete Cosine Transform). Using landmark detection based on three principal 
curvatures, Tang (Tang et al., 2015) determines the geometric properties of each vertex using 
an asymptotic cone in order to generate three curvature faces to which are applied Local 
Normal Patterns. Neto (Cardia Neto and Marana, 2015), used 3D-Local Binary Patterns (LBP) 
with Histogram Oriented Gradients (HOG) as approach on Kinect Eurecom images. Bondi 
(Bondi et al., 2015) also used real-time Kinect sequences by generating high resolution models 
every-time someone passes through the sensor. Keypoints are detected using SIFT and spatial 
clustering, used in pairs to evaluate the facial curves between pairs of points. 
The inclusion of two modalities has shown to be the most promising for real-time systems and 
uncontrolled environments. The results have shown to be always improved with the fusion of 
2D and 3𝐷𝐷 modalities. (Abate et al., 2007) 
In 2003, Chang et al. (Chang et al., 2003) investigated the benefits of integrating 3D data (using 
a Minolta Vivid 900 sensor) with 2D images, using PCA separately on 2D and 3D data. The 
authors state that 2D and 3D individually get similar performances, but when combined (with 
a simple weighting system) they get a significant increase in the performance. Tsalakanidou 
et al. (Tsalakanidou et al., 2003) applied Eigenfaces on both 2.5D and 2D scans. Here the 
multimodal approach has shown significant improvements when compared with independent 
2.5D and 2D recognition. Later, in his works, Mian (Mian et al., 2007) (Mian et al., 2008) 
proposed some new approaches for multimodal face recognition. In 2007 (Mian et al., 2007), 
using a combination between 3D Spherical Face Representation (SFR) and 2D SIFT, big part of 
the candidate faces are removed from the query images. Then the eyes-forehead and the nose 
regions are automatically segmented. One year later he proposed a new method using a new 
keypoint detection using the high shape variations in 3D data and a Local Feature Matching 
(Mian et al., 2008) based on tensor representation for depth data. Using Kinect Scans, Li et al. 
(Li et al., 2013) obtained canonical frontal views (shape and textural). Here the RGB data is 
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also transformed to the discriminant color space and a sparse representation classifier (SRC) 
is applied in both types of scans. In high resolution scans Hiremath et al. (Hiremath and 
Manjunatha, 2013), used Radon transform on both texture and depth images in order to 
obtain binary maps to crop the facial region. Gabor features are extracted from both type of 
scans and obtained vectors in which PCA is applied as the input in an AdaBoost classifier that 
selects the most discriminant features. Also using Kinect, Ajmera (Ajmera et al., 2014) 
proposed the use of SURF-based descriptors in Kinect scans (tested on EURECOM and 
CurtinFaces datasets). Here, images with variation in pose are generated, and SURF is also 
used for face matching independently on depth and intensity images. Mrácek (Mracek et al., 
2014) used Gabor and Gauss-Laguerre filters to describe texture and depth information. 
In recent works, Elaiwat (Elaiwat et al., 2015) in high resolution scans, used curvelet 
coefficients to represent the facial geometrical features, to identify keypoints and extract local 
information about its neighbourhood. Nair (Naveen et al., 2015), used a Local Polynomial 
Approximation Filter (LPA) to obtain directional faces. These faces are optimized using the 
Intersection of Confidence Interval Rule (ICI) and feature extraction is done using mLBP. 
Krishnan (Krishnan and Naveen, 2015) introduced a new framework using entropy maps of 
the texture and depth maps independently and using saliency maps on texture images. Dai et 
al. (Dai et al., 2015), using Kinect data, proposed a new local descriptor for feature extraction 
after the use of Gabor filters: Enhanced Local Mixed Derivative Pattern (ELMDP). Finally, 
Bennamoun (Hayat et al., 2015) proposed a new raw depth pose estimation, not assuming a 
strong statistical relationship between the training data and the query faces, followed by the 
application of a Riemannian manifold for feature selection. 
As we can observe, new developments show the use of unimodal 3D and multimodal 
approaches for developing face recognition frameworks, although the use of the multimodal 
ones seem to be the most promising strategies for real-time systems. Table 3 summarizes the 
most relevant information extracted from the works described above, regarding a series of 
parameters (feature extraction, classifiers, datasets ...) whose rational choice must be thought 
of when designing and assessing a new approach to 3D face recognition. 

3. Proposed Methodology 

3.1. Original algorithm overview 
The hierarchical recognition algorithm that we work upon on the present work was first 
proposed and explored in two previous works (Monteiro and Cardoso, 2015a,b) and is 
schematically represented in Figure 1. Figures 1(a) and 1(b) depicts the enrollment process in 
the proposed approach. During enrollment, a new individual’s biometric data is added into a 
previously existent database of individuals. For each individual, a hierarchical ensemble of M 
partial face models is trained. The M individual-specific models are built by maximum a 
posteriori (MAP) adaptation of the corresponding set of M universal background models 
(UBM) using individual-specific data. The UBM is a representation of the distribution that a 
biometric trait presents in the universe of all individuals. MAP adaptation works as a 
specialization of the UBM based on each subject’s biometric data. The idea of MAP adaptation 
of the UBM was first proposed by Reynolds (Reynolds et al., 2000), for speaker verification. 
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Author Type Feature Extraction Classifier Dataset r1 

[Gordon, 1991] 3𝐷𝐷 Distance Measures Euclidean Distance 8 subjects (23 scans) 97.00 

[Tanaka et al., 1998] 3𝐷𝐷 Curvature features Fisher Spherical 
Approximation 37 subjects 100 

[Chua et al., 2000] 3𝐷𝐷 Point Signature 
Comparison Ranked vote 6 subjects (24 scans) 100 

[Moreno et al., 2003] 3𝐷𝐷 Geometric statistics Euclidean Distance GavabDB 78.00 

[Min et al., 2012] 2.5𝐷𝐷 L2 Distances Euclidean Distance 20 subjects 100 

[Naveen and Moni, 
2015] 2.5𝐷𝐷 DWT + DCT Euclidean Distance FRAV3D 96 

[Tang et al., 2015] 3𝐷𝐷 Principal Curvatures 
+ LNP 

Weighted Sparse 
Representation FRGC 93.33 

[Cardia Neto and 
Marana, 2015] 2.5𝐷𝐷 3𝐷𝐷-LBP+HAOG SVM Eurecom ∼ 98 

[Bondi et al., 2015] 2.5𝐷𝐷 SIFT an Curvatures RANSAC + Distance 
and Salience Metric 

Kinect Sequences 
(16 subjects) 100 

[Chang et al., 2003] MM PCA Mahalanobis 
Distance 

366 subjects (676 
scans) 98.8 

[Tsalakanidou et al., 
2003] MM Eigenfaces Euclidean Distance XM2VTS 98.75 

[Mian et al., 2007] MM 3𝐷𝐷-SFR and 2D-SIFT Modified ICP FRGC 98.31 

[Mian et al., 2008] MM 
Tensor 

Representation + 2D 
SIFT 

4 Different Similarity 
Measurements FRGC 98.6 

[Li et al., 2013] MM - SRC CurtinFaces 96.7 

[Hiremath and 
Manjunatha, 2013] MM Gabor Features Nearest Neighbor Texas 3𝐷𝐷, Bosphorus 

and CASIA 3𝐷𝐷 99.5 

[Ajmera et al., 2014] MM SURF Nearest Neighbor Eurocom and 
CurtinFaces 

89.28 and 
98.07 

[Mracek et al., 2014] MM Gabor/Gauss-
Laguerre features Correlation Metric Kinect, Kinectic 

Dataset, FRGC <89 

[Elaiwat et al., 2015] MM Curvelet Coefficients Cosine Distance FRGC, BU-3DFE, 
Bosphorus 99.2, 95.1, 91 

[Naveen et al., 2015] MM mLBP Euclidean Distance FRAV3D <91.88 

[Krishnan and 
Naveen, 2015] MM Saliency + Entropy + 

HOG Tree Bagger FRAV3D, CurtinFaces 92 

[Dai et al., 2015] MM ELMDP/Gabor 
features Nearest Neighbor CurtinFaces ∼ 95 

[Hayat et al., 2015] MM Riemannian 
manifold SVM 

BIWI Kinect, 
CurtinFaces, UWA 

Kinect 
94.737 

Table 3: Summary of the most relevant works concerning 3𝐷𝐷 face recognition 
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The database is probed during the recognition process to assess either the validity of an 
identity claim (verification) or the k most probable identities (identification) given an unknown 
sample of biometric data. In the aforementioned previous works, the authors proposed an 
innovative approach to the recognition process based on the global precedence hypothesis of 
face perception by the human brain. Recognition is performed hierarchically, as depicted in 
Figure 1(c), with global models taking precedence over more detailed ones. Partial models are 
hierarchically organized into levels. Each level is composed by a set of non-superimposing 
subregions, Il of equal size, with subregions at the same level summing to the full-face image, 
𝐼𝐼0. 

During recognition, a test image from an unknown source follows the hierarchical flow de- 
picted in Figure 1(c), until a decision can be made with a significant degree of certainty. The 
significance of a decision carried out at a single level is defined through the analysis of the 
likelihood-ratio values obtained for each possible identity claim, through the computation of 
a certainty index, 𝑐𝑐𝑚𝑚: 

 
𝑐𝑐𝑚𝑚 = 𝑠𝑠𝑡𝑡∗,𝑚𝑚 −

1
𝑇𝑇 − 1

� 𝑠𝑠𝑡𝑡,𝑚𝑚

𝑇𝑇

𝑡𝑡=1,𝑡𝑡≠𝑡𝑡∗
 (1) 

where 𝑠𝑠𝑡𝑡∗,𝑚𝑚 represents the highest observed likelihood-ratio value (true identity) and the 
average of all other values (average impostor) is represented by 1

𝑇𝑇−1
∑ 𝑠𝑠𝑡𝑡,𝑚𝑚
𝑇𝑇
𝑡𝑡=1,𝑡𝑡≠𝑡𝑡∗ . If the 𝑐𝑐𝑚𝑚 

value exceeds a previously optimized threshold, 𝜃𝜃𝑙𝑙, the maximum likelihood-ratio decision is 
accepted. 

When 𝑐𝑐𝑚𝑚 > 𝜃𝜃𝑙𝑙, however, the algorithm will consider that an analysis at a more detailed level 
is necessary to achieve a decision with a higher degree of confidence. At this point, the 
algorithm proceeds to the next level, working on subregions 𝐼𝐼1−2, the second in the 
hierarchical chain depicted in Figure 1. When one level is composed by multiple subregions, 
each one of them is treated independently, and only the maximum 𝑐𝑐𝑚𝑚 value among them is 
considered. 
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 a) b) 

 
c) 

Figure 1: Schematic representation of the proposed algorithm and its main blocks: 
a) training of the universal background models using data from multiple individuals; b) maximum a 

posteriori (MAP) adaptation of the universal background models (UBM) to generate individual specific 
models; and (c) testing with new data from unknown sources 

From (Monteiro and Cardoso, 2015a) 

All models are trained using Gaussian Mixture Models (GMM) and sets of SIFT keypoint 
descriptors for feature representation. In the next section we present some alterations to this 
choices in order to adapt the outlined framework to depth images. 

3.2. Proposed extension to depth images 
On the present work we carried out some preliminary experiments using the framework 
detailed in the last section, but using Kinect depth images as the input for the whole system. 
The architecture of the system remains as described above and depicted in Figure 1. By 
analysis of some of the recent works listed in Section 2, we decided to focus the extension of 
our framework on feature description. With this in mind, two feature descriptors were chosen 
to describe Kinect depth images, taking the place of the original SIFT keypoint descriptor from 
the original works: 
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− Dense SIFT grid: while the original SIFT algorithm includes a keypoint detection block, 
the noisy nature of depth images, associated to their low intrinsic detail, might severely 
hinder the correct functioning of this detection. Therefore, we used a dense grid of 
equally separated keypoints to compute the SIFT descriptors and guarantee that enough 
information is present for robust modeling. 

− Local Binary Patterns (LBP): as an alternative to dense SIFT, we also perform uniform 
LBP description locally on a set of 4 × 4 sub-images. The resulting histograms are then 
concatenated to achieve a full description of the image. We chose LBP not only due to 
its vast array of applications in computer vision in works concerning texture description, 
but also because of the promising performance it presented in some recent datasets 
built with Kinect depth images (Min et al., 2014b). 

With this extension we end up with two instances of the whole hierarchical framework, based 
on either RGB or depth images. In the next section we discuss how information from both 
sources is integrated into a single decision. 

3.3. Multimodal fusion 
In this work we performed fusion at the score level, using the likelihood-ratio values from two 
hierarchical pipelines: one for RGB images, 𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅, and one for depth images, 𝑠𝑠𝑑𝑑. The final fusion 
score, 𝑠𝑠𝑓𝑓, is obtained by a weighted averaging of the two scores, 𝑠𝑠𝑓𝑓 = 𝑤𝑤𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑤𝑤𝑑𝑑 ×
𝑠𝑠𝑑𝑑. The optimal values for the weighting parameters were found through grid search, under 
the constraint Σ𝑖𝑖𝑤𝑤𝑖𝑖 = 1. 

4. Results and Discussion 

4.1. EURECOM Dataset 
The experiments were conducted in the EURECOM database. Using Kinect Sensor, this 
database has a set of well-aligned 2D, 2.5D, 3D and video data. It includes scans from 52 
subjects (38 males and 14 females) from two sessions interleaved from 5 to 14 days. Each 
session has nine types of scans that include: neutral face, open mouth, smiling, strong 
illumination, occlusion with sunglasses, occlusion by hand, occlusion by paper, right face 
profile and left face profile. The acquisition environment is controlled in terms of luminosity, 
with the individuals always in a range from 0.7 to 0.9 meters to the sensor. A blank background 
was chosen to make the processing of the data easier. An example of the 2D and 2.5D images 
from a single individual is presented in Figure 2. We chose to not consider the profile images 
as the designed framework is still limited as far as pose variations are concerned. 

 
(a) (b) (c) (d) (e) (f) (g) 

 
(h) (i) (j) (k) (l) (m) (n) 

Figure 2: Example images from the EURECOM dataset, for a single subject: (a-g) RGB (h-n) depth 
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 LO OE OM OP OPM S 

L0 0.990 0.962 0.856 0.240 0.865 0.962 

L∗ 0.990 0.962 0.952 0.625 0.913 0.990 

L0.2 1.000 0.988 0.964 0.554 0.976 0.988 

LGBP 
[Min et al., 2014b] 0.990 0.904 0.990 0.817 0.952 1.000 

SIFT 
[Min et al., 2014b] 0.837 0.712 .885 0.375 0.913 99.04 

Table 4: Main results obtained using RGB images and SIFT feature description 

 LO OE OM OP OPM S 

L0 0.721 0.615 0.308 0.048 0.462 0.692 

L∗ 0.721 0.615 0.308 0.048 0.490 0.731 

L0.2 0.606 0.423 0.087 0.010 0.375 0.675 

SIFT 
[Min et al., 2014b] 0.069 0.020 0.010 0.029 0.020 0.049 

Table 5: Main results obtained using depth images and dense SIFT feature description 

4.2. Experimental setup 
In our framework, neutral face images were used for the training of the models and the 
remaining scans were used as query faces inputted in the system (profile images were 
eliminated). The images were manually cropped in order to only analyze the facial region. 
We chose to assess the rate of correctly identified individuals, by checking if the true identity 
is present among the N highest ranked identities. The N parameter is generally referred to as 
rank. This allows us to define the Rank-1 recognition rate, r1, as the recognition rate at N=1. 

4.3. Performance analysis 
The main results obtained with the framework detailed above, for both RGB and depth 
images, are summarized in Tables 4-7. For each tested scenario we present the individual 
performance observed for each condition present in the EURECOM dataset: light on (LO), 
occluded eyes (OE), occluded mouth (OM), occluded paper (OP), open mouth (OPM) and smile 
(S). For each of such conditions and scenarios we define three reference values extracted from 
our framework: 

− Full-face, L0: performance observed when considering only the first level of the 
hierarchical framework. 

− Optimal, L*: performance observed for the full hierarchical framework, optimized with 
regard to the 𝜃𝜃𝑙𝑙  parameter. 

− Reject option, L0.2: performance observed with the option of not-classifying a image if it 
reaches the last level of the hierarchical framework with no certain classification being 
achieved. We choose to assess performance in the specific case of 20% rejection. 

From the results obtained using RGB images, we can conclude that our 2D approach has a 
similar or higher performance in all tested conditions, even though a fair comparison can only 
be performed between our results and the SIFT approach presented in (Min et al., 2014b), 
while the LGBP results are displayed on Table 4 because they were the best ones obtained in 
the same work. The SIFT algorithm tested by Min et al. (Min et al., 2014b), was outperformed 
by our GMM modeling approach to SIFT description. Only in the face occluded with paper, can 
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we observe worse results when compared to the literature. This indicates that more work 
needs to be done to overcome this drawback condition. 
Tables 5 and 6 summarize the most relevant results concerning the application of our 
hierarchical framework to depth images. One common observation that can be made is that 
the application of the rejection mode alternative doesn’t bring about any improvement, as it 
did on the original RGB scenario. This might relate to the higher probability of getting strong 
false positives from depth images. A very high score in a wrong identity exerts a strong 
limitation over the computation of the quality criterium defined on Equation 1. It is also 
interesting to note how the optimal performance from the whole hierarchical flow shows very 
little improvement for all the test scenarios, using dense SIFT, when compared to the holistic 
representation from the first level. The advantages of using our approach for this specific 
modeling strategy can, therefore, be questioned. However, when comparing to the traditional 
SIFT detector and descriptor, used by Min et al. (Min et al., 2014b), we can see that our 
approach of modeling a densely sampled grid of SIFT descriptors achieves a considerably 
higher performance and should be considered in its simplest form (using only the holistic 
representation from the first level) as an aid to more traditional RGB-based approaches. 

 LO OE OM OP OPM S 

L0 0.779 0.587 0.240 0.058 0.462 0.683 

L∗ 0.798 0.635 0.433 0.106 0.538 0.788 

L0.2 0.793 0.694 0.106 0.071 0.524 0.783 

LBP 
[Min et al., 2014b] 0.837 0.789 0.519 0.125 0.827 0.837 

Table 6: Main results obtained using depth images and LBP feature description 

 LO OE OM OP OPM S 

2D-SIFT + 2.5D-LBP 1.000 0.981 0.952 0.625 0.933 0.990 

Fusion LGBP 
[Min et al., 2014b] 1.000 0.894 0.981 0.856 0.981 1.000 

Fusion LBP 
[Min et al., 2014b] 0.990 0.933 0.962 0.817 0.981 1.000 

Table 7: Multimodal fusion results obtained using information from RGB and depth images 

When considering the LBP results, presented in Table 6, we might observe that, opposed to 
the dense SIFT modeling, the hierarchical framework brings about considerable increase in 
performance for almost all test scenarios. All observed results are also slightly to considerably 
better than the performance observed for their SIFT counterpart, corroborating the 
observations presented by Min et al. (Min et al., 2014b) in the original work on the EURECOM 
dataset. For that reason the multimodal fusion shown below are obtained by considering the 
original SIFT formulation for 2D images and only the LBP version of the framework applied to 
depth 2.5D images. 
The analysis of the multimodal fusion results, presented in Table 7, shows that significant 
improvement was obtained with respect to both 2D and 2.5D unimodal alternatives, for all 
test scenarios except OP, where the discrepancy between the individual performances of the 
unimodal approaches serves as a simple justification for this observation. When comparing 
with the results from the state-of-the-art we can observe that, once again, besides the OP 
scenario, we achieved performance either in the same range or slightly better than the ones 
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reported in literature. With this observations in mind we can readily conclude that our 
framework follows the trend observed in previous works, where multimodal fusion of multiple 
sources of information leads to an improvement over all individual performances. If we 
manage to improve the individual performances of each framework we should, thus, be able 
to also improve the discriminative power of multimodal fusion and, consequently, increase 
the real-life applicability of systems based on such approaches. 

5. Conclusions and Future Work 
In the present work we propose an extension of some works on hierarchical face recognition 
to 2.5D Kinect depth images. We approach this problem by proposing alternative feature 
description strategies, such as dense SIFT and LBP. We achieved or improved over state-of-
the-art performance in most tested scenarios. 
However, some potential improvements can be easily suggested in order to achieve higher 
performance and also to further assess the effectiveness of the proposed algorithm in a higher 
variety of interesting scenarios. First of all, exploring feature descriptors other than the 
proposed ones, or even exploring fusion of multiple features might result in a more complete 
description and, thus, result in better performance in a wider variety of acquisition conditions. 
One of such conditions, not yet tested due to its non-existence on the EURECOM dataset, is 
severe low illumination. This case, in theory, represents a situation where 3D information 
should severely improve over RGB alone. 
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