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Abstract 
Achieving persistent and reliable autonomy for mobile robots in challenging field 
mission scenarios is a long-time quest for the Robotics research community. Deep 
learning-based LIDAR odometry is attracting increasing research interest as a 
technological solution for the robot navigation problem and showing great potential 
for the task. 
In this work, an examination of the benefits of leveraging learning-based encoding 
representations of real-world data is provided. In addition, a broad perspective of 
emergent Deep Learning robust techniques to track motion and estimate scene 
structure for real-world applications is the focus of a deeper analysis and 
comprehensive comparison. 
Furthermore, existing Deep Learning approaches and techniques for point cloud 
odometry tasks are explored, and the main technological solutions are compared 
and discussed. 
Open challenges are also laid out for the reader, hopefully offering guidance to 
future researchers in their quest to apply deep learning to complex 3D non-matrix 
data to tackle localization and robot navigation problems. 
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1. Introduction 

The tasks of localization and scene mapping are a fundamental prerequisite for both human 
and mobile robot locomotion. As an example, human perception of their surroundings and 
self-motion is closely tied to their multimodal sensory perception, and that enables us to 
locate and navigate in complex three-dimensional (3D) scenarios. If the perception 
component of the human body was lacking, it would severely hinder cognition and motor 
control. 

In similar fashion, mobile robots must always be able to perceive their environment and 
estimate their internal system state based on their on-board sensorization, because otherwise 
it would be impossible to properly develop safe and reliable robotic control systems and by 
association other higher-level tasks such as path planning and/or object avoidance. 

The proliferation of robotic agents in our current society, whether it would be in the form of 
self-driving vehicles, delivery drones or home service robots, is highly dependent on the 
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evolution of reliable sensing data processing that can lead to safe autonomous decision-
making. When it comes to mobile robots, enabling a high level of autonomy requires a high 
degree of precision and robustness in localization, as well as incrementally building and 
maintaining a world model (i.e., the travelled trajectory or a full-fledged map of their 
surroundings), with the capability to continuously process new information and adapt to 
various scenarios. 

 
Figure 1: Comparison of classical system vs novel learning models 

The problem of localization has been widely studied and researched. However, typically the 
best performing solutions rely heavily on intricate hand-crafted and manually tailored 
systems. Across a wide variety of necessary subtasks for achieving robust robot navigation 
(i.e., odometry estimation, place recognition or global localization) the better performing 
solutions are usually the product of closed-form mathematical solutions that are then 
finetuned to tackle some typical issues that may occur. 

The robotics research field presents different challenges to deep learning approaches when 
compared to computer vision. A robot is an agent that acts in and interacts with others within 
a physical real-world environment. It perceives the world with its different sensors, builds a 
coherent representation of the environment, and updates this model over time. Ultimately, a 
robot must make decisions, plan actions, and execute these actions to fulfill a task anchored 
on this perception it constructs of the environment. 

For robotic vision, perception is only one part of a more complex and goal-driven system. The 
immediate outputs of Robotic vision (whether it is object detection, segmentation, depth 
and/or pose estimation, etc.), will ultimately result in actions in the real world. In a simplified 
comparison, whereas computer vision takes images or point-cloud data and translates them 
into useful information, robotic vision translates images into actions or interactions with the 
environment. 

1.1. Learning-based approach vs classical system 

As reported in Figure 1, classical system design focus on hand-designing algorithms that given 
a certain input X can calculate the output Y to a high degree of accuracy. However, unforeseen 
environment conditions or imperfect sensor measurements may negatively impact these 
handcrafted models and prevent them to function as intended. In addition, it is not realistic 
to expect a hand-crafted system to be able to handle all types of complex environmental 
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dynamics without working under some assumptions that may impose unrealistic constraints 
that impact both the accuracy and reliability of such hand-crafted systems. 

Data-centric methods, on the other hand, instead place the onus of accuracy and reliability on 
the data itself. Learning approaches allow the algorithm to learn to construct a function that 
maps the inputs X (e.g., visual, inertial, LIDAR data or other sensors) to the outputs Y (e.g., 
displacement, orientation, scene geometry or semantics). 

Learning-based methods leverage the automatic feature detection and powerful feature 
space representation offered by convolutional neural networks, that allows for finding a lot of 
task-relevant cues in the scene. As an added bonus, neural network feature representations 
are usually way more robust to environment conditions such as lightning changes, motion 
blur, imperfect camera calibration or visual artifacts, which are extremely hard to model by 
hand and there are no straight known mathematical formulations to mitigate their negative 
effect. However, this great potential of learning-based approaches can only be unlocked if 
certain limitations can be overcome (Sünderhauf et al. 2018). 

 Classical systems Learning-based systems 
Representation Explicit: physics-based model of the environment, 

mathematical formulation 
Implicit: neural architectures, feature 
space representation 

Generality Broadly applicable to different scenarios, though 
sometimes unable to work under different operational 
conditions 

Risk of overfitting to training scenario 
settings 

Robustness Small basin of convergence: requires good models and 
estimates thereof 

Large basin of convergence: highly robust 
in trained regime 

Data Only needed for system identification Requires abundancy of data to develop a 
working model 

Computational efficiency Overall dependent of task complexity After having a trained model, powerful 
and efficient representation 

Table 1: Classical systems vs learning-based systems properties 

1.2. Survey relevance 

There are several survey papers that have extensively discussed model-based localization and 
mapping approaches in the context of robotic navigation. Most notably, Cadena et al. (2016) 
is one of the most comprehensive compilations of the existing approaches of robot navigation 
and Simultaneous Localization and Mapping (SLAM). However, and despite a brief mention of 
deep learning models, it does provide much when it comes to overviewing deep learning 
research, especially because it predates the explosion of research in this field in the last 3- 5 
years. Other renown works are more focused in specific parts of the problem such as the 
probabilistic formulation (Thrun 2000) or visual odometry (Scaramuzza and Fraundorfer 
2011). When it comes to leveraging Deep Learning for Robotic tasks, there are two important 
works to mention: Li, Wang, and Gu (2018) explore the transition from geometric model-
based to data-driven approaches by providing a comprehensive technical review of the 
underlying benefits and motivations and, more recently, Chen et al. (2020) provided a more 
extensive compilation of the use of learned models for all components of spatial navigation, 
inclusively coining the term “Spatial machine Intelligence”. A discussion of the limits and the 
incredible potential of Deep Learning in the broad context of robotics is provided in 
Sünderhauf et al. (2018), underlining some of the important research directions to overcome 
the current technological limitations and challenges. 

This work aims to be narrower in scope, limiting itself to study only LIDAR-based odometry 
estimation and choosing to focus on the approaches that leverage deep learning as a tool for 
performing this challenging task. It is worth keeping in mind that this is a new and emerging 
research field, and this cutting edge nature (most significant advances were produced in the 
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last 2 years) naturally means the literature resources are still scarce and lack great benchmark 
comparisons. 

Notably, although the problem of localization and odometry falls is fundamentally part of 
robotics research, the incorporation of learning methods for such tasks is a cross-disciplinary 
effort that involves research areas such as machine learning, data science and computer 
vision. Thus, the relevance of compiling a brief survey is magnified, since the natural 
community barriers are often blurred, and the information is more dispersed. 

1.3. Article organization 

The remainder of this article is organized as followed: Section 2 introduces background 
knowledge on deep learning and how it has been being used as a tool for solving perception 
tasks, delving deeper on deep learning (DL) itself and the huge advances on learning-based 
models for Computer Vision; Section 3 compares existing approaches to DL-based LIDAR 
odometry estimation, zooming in on the differences between these novel approaches; Section 
4 offers a summary of open challenges and research opportunities pertaining to this topic; 
and finally, Section 5 wraps up the paper with concluding remarks. 

2. Background Knowledge 

In recent years, deep learning methods have risen to predominance by showing good 
capability for cognitive and perceptual tasks in computer vision applications, whether at 
analyzing unknown features, capturing image depth or even perceiving egomotion between 
image frames. Thus, the development of learning-based applications aimed at improving 
visual-based robotic navigation has had a significant surge as of late, with plenty of new 
literature, new methods and techniques that are incrementally improving upon the accuracy 
and cross-scenario robustness for visual robot navigation tasks. 

However, the onset and proliferation of Deep Learning methods is mostly tied to Computer 
Vision applications. This is because the vast majority of deep learning techniques are 
performed on Euclidean data, that is represented in 1-dimensional or 2-dimensional 
structures, typically in a grid-like topology. However, for Robotic systems, there usually is 
sensor equipment able to capture rich underlying information about the scene that outputs 
sparse 3-dimensional (3D) data and being able to adequately process point cloud data 
structures to capture as much useful information as possible has the potential to be a giant 
leap for robotic perception capability. This presents a whole bunch of different new challenges 
when compared to visual image data that current research is only now trying to address. 

2.1. Challenges on 3D matrix data 

Robotic applications are progressively being equipped with more 3D perception sensors that 
provide point-cloud representations of the environment. Thus, it is important to take a closer 
look at the specific challenges non-matrix data poses to the use deep neural network 
architectures. Applying deep learning on 3D point cloud data comes with many different new 
challenges. For instance: occlusions which can happen in cluttered scenes; noise/outliers 
which cause the appearance of unintended points and/or points misalignment. However, 
there are more practical considerations that introduce more pronounced challenges when it 
comes to application of deep learning on point cloud data which can be categorized into the 
following: 

 Irregularity: Point cloud data is highly irregular, i.e., the 3D points are not evenly 
sampled across the different regions of an object/scene, so some regions could have a 
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denser point concentration while most patches have sparsely constructed point 
clouds. 

 Unstructured: Point cloud data is not displayed on a regular grid. Each point is scanned 
independently and its distance to the neighboring points is not always fixed or fully 
known. In contrast, pixels in images are represented on a 2D grid, and the spacing 
between two adjacent pixels is always known and fixed. 

 Unorderdness: A point cloud of a scene, regardless of representation, is obtained by 
acquiring data around the objects in the scene and is usually stored as a list in a file. 
That means there often is no implicit order on the point set, introducing ambiguity 
whereas there are multiple possible point cloud forms for representing the same 
scene. 

These properties of point cloud are very challenging for some deep learning techniques, 
especially for Convolutional Neural Networks (CNN’s). This is because convolutional neural 
networks are more well suited to work with ordered, regular and on a structured grid data. 
Early approaches overcome these challenges by converting the point cloud into a structured 
grid format, i.e., projecting the point cloud into some sort of image structure using cylindrical 
projection, spherical projection or 2D panoramic view projection. In recent years, researchers 
have been working have been developing approaches that directly use deep learning on raw 
point cloud data to great success which can unlock the full potential of deep learning as a 
technology for scene perception and understanding from point cloud data. 

 
Figure 2: Illustration of the classical challenges of working with point cloud data. 

Adapted from Bello, Yu, and Wang (2020) 

3. Comparison of Existing Approaches 

LIDAR sensors are a great option for mobile agents to perceive their surroundings, with the 
added bonus of allowing to detect the 3D scale of the world, which visual cameras cannot 
directly obtain. Classical LIDAR odometry frameworks are very competitive for the motion 
estimation task, especially because they do not suffer as much from the inaccurate depth 
prediction and scale drift as visual camera information. Its performance though, is also very 
sensitive to point cloud registration errors caused by non-smooth motion. In addition, the data 
quality of LIDAR measurements is also highly affected by weather conditions such as rain or 
fog. 

Geometry-based methods like point-to-point Iterative Closest point (ICP), point-to-plane or 
GICP (Segal, Haehnel, and Thrun 2010) were designed to solve the point cloud registration 
problem, but usually the odometry estimation task requires an extra sensitivity to tackle. 
LOAM (Zhang and Singh 2017) for instance, has long been considered the state-of-the-art 
LIDAR motion estimation framework. It works by extracting the line and plane features in 
LIDAR data and saving these features to the map for edge-line and plane-surface matching. 
LOAM achieves low-drift and good performing real-time odometry estimation by having two 
modules running in parallel: accurate motion estimation and mapping. The estimated motion 
of scan-to-scan registration is used to correct the distortion of point clouds and guarantee the 
real-time performance of registration while simultaneously the odometry outputs are 
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optimized jointly with the map. Given the success of LOAM, deep learning approaches have 
come out to try to emulate its success as far as accuracy is concerned, while maintaining the 
benefits learning-based solutions can have when compared with classical-handcrafted 
methods. 

Since point cloud data is challenging to be directly fed to neural networks due to their sparsity 
and irregular sampling format, some data preprocessing and/or domain adaptation technique 
is usually employed. A common strategy to handle point cloud data in the scope of neural 
networks is to utilize a spherical or cylindrical projection to convert point cloud data 
information to regular matrix type data. After that, the feature extraction process can follow 
the typical pipeline of convolutional neural network representation. This step avoids memory 
inefficiency issues associated with conventional modules such as 2D convolution and 
upconvolution on non-grid like data typology. 

For the point cloud registration problem, multiple feature-based methods aimed at detecting 
ever more accurate correspondences between consecutive scans have been developed in the 
recent past. Other methods for point cloud registration follow the working principle of 
iterative local methods like classical ICP variants, which learn to align two scans directly. 
However, when compared with registration, odometry problems are much more challenging 
because they require much higher accuracy under real noisy environments to prevent drifting. 
It is still early times for deep LIDAR odometry estimation, but multiple different approaches 
have been surfacing, with widely distinct techniques. 

In particular, Velas et al. (2018) predicted pose by framing the odometry estimation problem 
as consecutive classification tasks and exhausting all possibilities. This approach, although it 
addresses the task of odometry estimation, it is not explicitly modelled as an odometry 
estimation system. LO-Net (Li et al. 2019) was the first instance of directly formulating the 
odometry estimation problem as a numerical regression of pose estimates and the first 
success towards true learning-based LIDAR odometry. 

LO-Net architecture is consisted of three parts: a normal estimation sub-network, a mask 
prediction sub-network, and a Siamese pose regression main network. Cylindrical projection 
is utilized to encode point cloud data, which is then fed to the normal estimation network. 
Odometry is treated as regression problem, decoupled into position and orientation learning 
with two learnable parameters to observe the scale between translational and rotational 
motions. A mask strategy is employed to compensate for dynamic objects in the scene, 
perceiving the image patches where geometric consistency can be correctly enforced and thus 
introducing robustness to the pose regression network. LO-Net managed to achieve 
competitive results to the classical baseline for LIDAR odometry which is LOAM. 

DeepPCO (Wang et al. 2019) is an end-to-end LIDAR odometry framework that is composed 
of two sub-networks: a translation estimation network and a flow orientation network. The 
sub-networks form a deep parallel framework that regresses 6-DoF pose. LIDAR Data is 
encoded as a 2D panoramic-view projection images and feed to the network as two 
consecutive images stacked together. 

DeepLO (Cho, Kim, and Kim 2019) takes a different approach, feeding a rendered vertex map 
and a normal map into a network and regress a 6-DoF relative pose between two consecutive 
frames constrained by both an ICP-inspired loss and a field-of-view loss. Leveraging these 
representations and having designed two different loss functions, the authors can train the 
framework in a supervised or unsupervised manner. 
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DMLO (Li and Wang 2020) utilizes cylinder encoding to represent LIDAR points in a grid-like 
topology first and proceeds to extract feature vectors using convolutional neural networks 
and comparing the similarities in a local region to get correspondences between different 
scans. After that, the problem is converted to a rigid transformation estimation between 
matched pairs in 3D space which can be simply solved by Singular Value Decomposition (SVD). 

It is worth noting that all these methods for LIDAR odometry make use of projections of 3D 
data into 2D space, while encapsulating some of the key properties of the original 3D shape. 
Projecting 3D data into the spherical and cylindrical domains is a common practice for 
representing 3D data in a fast and efficient way and have the added benefit of easing the 
processing of 3D data due to the Euclidean grid structure of the resulting projections. 
However, such representations can be not optimal for complicated 3D computer vision tasks 
due to the possible information loss incurred while performing this projection. 

4. Open Challenges and Research Opportunities 

The relative novelty of learning-based techniques for solving robotic perception and control 
tasks in open-world scenarios means that several research questions are far from being 
resolved. This section will briefly mention some of the bigger open questions that should be 
the focus of multiple research efforts by the research communities and if solved, could be key 
for the wider proliferation of Deep Learning as a core technology in Robotic Systems, towards 
practical applications that can grant them greater autonomy in their deployment 
environments. Most issues are transversal to the odometry estimation task, independently of 
the specific sensor modality, i.e., vision-based motion estimation frameworks face the very 
same challenges as point-cloud based odometry. 

Unified evaluation benchmark and performance metrics 

Ever since the introduction of SLAM systems, the argument persists about how to evaluate a 
given method’s performance and benchmark it according to sensible metrics that can provide 
an intuitive notion of how the method is performance versus the world scenario being 
perceived. This discussion becomes even more relevant in the case of Artificial Neural 
Networks (ANN’s) and systems that use them as core technologies. This stems for the data-
centric nature of such methods, of which the learning mechanism is affected by the intrinsic 
characteristics of the training data and how it is prepared. For instance, even though the KITTI 
dataset is widely regarded as a great choice for visual odometry (VO) estimation evaluation, it 
is frequent to see different authors in the literature utilizing different data splits and different 
metrics to evaluate their methods. Therefore, it makes it harder to fairly draw a direct 
comparison between methods, in the absence of a truly universally accepted benchmark 
dataset with both a strictly followed data split scheme and evaluation metrics. Moreover, the 
lingering question of scenario variability still subsides, with serious questions being raised 
about whether the performance in the KITTI dataset only terrestrial urban scenarios with fairly 
simple dynamics (almost a 2D trajectory) is enough evaluation data for accessing a method’s 
true capability and generalization ability. To this point, authors usually complement this 
benchmark with a real-world scenario test, but again, it is usually almost impossible to directly 
test another method in a fair and clearway. The sheer volume of data itself is also important, 
because even though the KITTI dataset possesses more than enough data for testing and 
benchmarking classical feature-based methods, deep learning architectures could perhaps 
benefit from a larger scale VO dataset to improve their performance and generalization ability. 
In the past, deep learning architectures have achieved prominence in classification and object 
detection tasks in part due to the availability of such large-scale task-specific datasets such as 
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ImageNet or Pascal VOC. With this in mind, there is a growing need for creating a complete 
VO benchmark datasets package that is able to cover multiple environments, as well as 
contain a bigger variability of motions and different scene dynamics. 

End-to-end DL vs Hybrid Model 

The scope to which DL methods should be used in robotic systems is also subject of discussion 
amongst the scientific community. End-to-end fully data-driven learning models that are able 
to predict a given task solely from raw data have proven massively successful in achieving 
increasing performance in accuracy, efficiency and robustness. On the other hand, there are 
those who believe that the secret for persistent autonomy is to integrate deep learning 
modules into the pre-built physical/geometry-inspired algorithms so as to fully leverage both 
the intrinsic nature of the data as well our prior hand-tailored empirical knowledge of the 
physical world. Hybrid methods have also achieved state-of-the-art performance for some 
tasks, such as visual odometry or global localization and benefit from being less data hungry 
than pure learning methods. Thus, this is a critical task-specific fundamental question that 
every roboticist should pose when developing a DL system. Data availability and variability 
could swing the answer to more of a hybrid model but often the general overall power of data-
centric learning and the ease of integration with other high-level learning task such as path 
planning, or robotic control can be the deciding factors for pure end-to-end learning models. 

Real-world deployment: Practical considerations, generalization ability and scalability 

Real world deployment and real-world performance of DL systems is still a systematic 
unanswered question in most cases that tends to be somewhat overlooked. For once, the 
computational and energy resource consumption of such systems must be taken into account, 
especially in the case of small mobile robots that sometimes demand a lot of optimization to 
properly function. Every parallelization opportunity in the inference process should be taken 
advantage, even though these robots usually do not have any type of GPU hardware, which 
limits the potential parallel implementations. Deployment of learning-based algorithms 
efficiently is somewhat tied to the available hardware. Nvidia Jetson TX1/2 or AGX Xavier 
embedded modules can function as cost-efficient GPU hardware for UAVs or mobile robots, 
operating under relative low power demand and with a lightweight form-factor. However, it 
often does not meet the requirements of more complex learning-based methods. Therefore, 
the trade-off between performance and model size also must be considered. 

New sensor sources 

The rise in predominance of Deep Learning as a tool for solving perception tasks was mostly 
tied to Computer Vision techniques, thus relying on visual cameras as the main data source. 
Over the years a lot of other sensors have also been used for feeding data to neural networks. 
Most prominently, inertial and LIDAR data has been utilized to great success in a myriad of 
different tasks, especially when it is possible to integrate more than one sensor modality in a 
given system so as to increase its accuracy and robustness. Other sensors such as event-
cameras, thermal cameras, radio signals or magnetic sensors have also been utilized in the 
literature, but most of these are severely underexplored compared to the more mainstream 
visual camera sensors. 

Previous experience with underwater robotics suggests that multibeam acoustics are 
sometimes the most effective sensor in perceiving 3D structure in confined underwater 
environments and are often the best the most suitable sensing equipment for reconstructing 
complex scenarios. For this reason, one pertinent research question for future studies, is the 
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inclusion of this data topology as a sensor modality for data-centric learning-based egomotion 
perception. 

Safety, reliability and interpretability 

The biggest criticism of Deep Learning systems is that it often perceived as a "black-box", 
depriving the system designer of the ability of easily correcting some immediate problems. 
This characteristic makes it extremely hard to employ DL systems in safety-critical tasks, since 
even the smallest error in pose or scene estimation can ultimately cause a localization drift 
that may severely harm the entire system. Therefore, it is also really important to develop 
mechanisms to mitigate the underlying uncertainty with the DL system decision-making. 
There are two significantly relevant approaches: interpretability and uncertainty estimation. 
Interpretability in AI is the degree to which a human can consistently predict the model’s 
result. The higher the interpretability of a machine learning model, the easier it is for someone 
to understand why certain decisions or predictions have been made. In a more practical sense, 
it refers to the system having a module that produces explanations for its predictions and 
what is inducing errors (e.g., a faulty sensor). Uncertainty estimation on the other hand is the 
idea of estimating a belief metric, i.e., a representation of the extent to which we trust our 
predictions. That are multiple ways of estimating a method uncertainty or bias, with perhaps 
the most common being to rely on the supervision of an external signal. In this way, the 
unreliable predictions (with low uncertainty) are avoided or smoothed in order to ensure the 
systems to stay within safe and reliable behavior. 

5. Conclusion 

This article proposed to compile an in-depth study on Deep LiDAR odometry techniques for 
helping solve the robot navigation task, with the ultimate aim of providing a roadmap for 
future research. The relative novelty of the research field means that the literature is still not 
abundant and lacking wider comparisons and benchmarks. However, the general approaches 
and different data handling strategies detailed in this article show multiple different paths 
forward for tackling robot localization tasks using 3D non-matrix data. Although the potential 
of learning-based LIDAR techniques is clearly showcased in recent literature, the technical 
maturity of such approaches is still on early stages, and its increase will be key to future real-
world deployments within mobile robot solutions. 

Open challenges and research opportunities are also laid out, encompassing several different 
issues troubling deep learning/robotics researchers, that if addressed in a meaningful manner, 
have the potential to catapult these approaches to the foreground of robot software 
development. 
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