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Abstract 
Backed by more powerful computational resources and optimized training routines, 

Deep Learning models have proven unprecedented performance and several  benefits to 
extract information from chest X-ray data. This is one of the most common imaging 
exams, whose increasing demand is reflected in the aggravated radiologi sts’ workload. 

Consequently, healthcare would benefit from computer-aided diagnosis systems to 
prioritize certain exams and further identify possible pathologies. Pioneering work in 
chest X-ray analysis has focused on the identification of specific diseases, but to the best 
of the authors’ knowledge no paper has specifically reviewed relevant work on 

abnormality detection and multi -label thoracic pathology classification. This paper 
focuses on those issues, selecting the leading chest X-ray based deep learning strategies 
for comparison. In addition, the paper discloses the current annotated public chest X-ray 
databases, covering the common thorax diseases. 
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1. Introduction 

Among the popular medical imaging exams, the Chest X-Ray (CXR) is frequently requested by 
healthcare professionals to assess the presence of thoracic diseases, due to its low-cost non-
invasive nature. Nevertheless, the thorough analysis of CXR images is time-consuming and their 
interpretation may be dubious even for expert radiologists (Shaw, Hendry, and Eden 1990). For 
this reason, the incorporation of computer-aided diagnosis systems in the hospitals is an 

attractive solution to increase the productivity and efficiency in the interpretation of these exams, 
by providing a second opinion. Considering the recurring need to assess several types of thoracic 

pathologies, Deep Learning (DL) based systems have been preferred over traditional machine 
learning approaches, following the advances in computational capabilities and the increasing 
availability of medical datasets. This way, the data-driven nature of DL has proved to achieve great 
performance for multi-disease detection and classification tasks, being a great preliminary 
diagnostic tool that reduces the physicians’ workload. A CXR-based computer-aided diagnosis 
system encompasses several steps to reach a diagnosis, and perhaps one of the most important 
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is abnormality detection, focused on the prioritization of more urgent abnormal cases. As 

mentioned in Yasaka and Abe (2018), this would be highly valuable for the clinicians to manage 
their time and resources, considering that cardiothoracic and pulmonary abnormalities are one 

of the leading causes of morbidity and mortality, according to Wang et al. (2016). This step could 
be further complemented with another important task, which is the identification of the 

pathologies present in the exam at hand. Here, one must consider a multi -label thoracic 
pathology classification approach, minding that it is possible to have more than one in the same 

image/patient. 

The detection and classification of cardiothoracic and pulmonary abnormalities often resorts to 
Convolutional Neural Networks (CNNs), due to their great ability to handle data with strong 
spatial relationship. In fact, these networks have been capable of matching or even exceeding 
human performance in other medical-related tasks, namely the diabetic retinopathy detection 
(Ting et al. 2017), and skin cancer classification (Esteva et al. 2017). Yet, to the best of the authors’ 
knowledge, no paper addresses a state-of-the-art review based exclusively on deep learning 
approaches to solve both the thoracic abnormality detection and classification tasks. For this 

reason, the present publication intends to gather and describe all public annotated CXR databases 
and analyse how they have been used in the most relevant papers to tackle abnormality detection 

and pathology classification. Consequently, certain criteria were defined to select the papers from 
arXiv, IEEE Xplore, PubMed, and Scopus: employing a 100% DL based methodology, published 

after 2015 to ensure the novelty of the work, which exclusively extracts information from images 
(and not radiology reports), and presents a relevant study in the field. It was also established that 

the comparison between the selected papers would be done based on the most frequently 
observed evaluation metric, the Area Under Curve (AUC). In summary, besides this introduction, 

the paper includes a review of the CXR datasets in Section 2, abnormality detection in Section 3, 
and multi-label thoracic pathology classification in Section 4. Finally, Section 5 presents the main 

conclusions. 

2. Chest X-ray Datasets 

Although DL approaches have proven to significantly improve the performance of computer-aided 
diagnosis systems, it is also noticeable that their distinctive data-hungry nature impairs further 

achievements. In fact, any achievements made in the recent past were only enabled by the 
publication of larger public CXR datasets. For this reason, it is still ambitious to say that these 

systems will soon have a truly large-scale high precision implementation in a real-life clinical 
domain, considering the challenges tied to the collection and annotation of CXR datasets. For 

example, Shin, Lu, and Summers (2017) state that it is not clear how to annotate the large amount 
of CXR images needed for DL methods, particularly ensuring their required precision. Besides, 

there are multiple approaches to even define the labels themselves, or the criteria to follow 
during the annotation process. 

In spite of all these difficulties, several CXR datasets have been published, which can be split into 
two main groups - the ones which tackle a specific thoracic pathology, and the ones which 

annotate multiple pathologies. While this paper will briefly describe the first group, the focus of 
this work are the datasets which encompass more than a single pathology. For instance, the JRST 
dataset presented in Shiraishi et al. (2000) contains 247 frontal CXR images with and without lung 
nodules, from 14 medical centers, being one of the first available collections. Jaeger et al. (2014) 
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provided two datasets centered in tuberculosis, named MC and Shenzhen sets. These were 

collected in the United States and Shenzhen, and contain 138 and 662 frontal CXR images 
respectively, presenting both normal and tuberculosis cases. Additionally, Ryoo and Kim (2014) 

also introduced a total of 10848 observations from the Korean Institute of Tuberculosis (KIT). 
Considering CXR datasets which tackle several pathologies, Gohagan et al. (2000) proposed the 

Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial which resulted in a 13-label 
partially public set of 185 421 CXR images from 56 071 patients. The Open-I Indiana University 

dataset was published in Demner-Fushman et al. (2016), collecting 8 121 associated frontal  
images from two large hospitals in the Indiana Network for Patient Care, and addressing the 10 
most prevalent conditions observed in 3 996 subjects. 

Later on, the National Institutes of Health (NIH) released the ChestX-ray8 in Wang et al. (2017a) 
and compiled 108 948 frontal views belonging to 32 717 unique patients and a total of 8 
associated pathologies (Figure 1) extracted from radiological reports using natural language 
processing. This dataset evolved to include 6 more categories, increasing the overall number of 
frontal CXR images and resulting in ChestX-ray14. It is argued that this version is more 

representative of the patients’ distributions and diagnosis in comparison to the previously 
mentioned set (Wang et al. 2017b). This way, ChestX-ray14 comprises a total of 112 120 images 

from 30 805 patients and 14 pathologies, and is by far the most popular dataset being used in 
today’s research. Another staple among the most popular CXR datasets is the CheXpert, as seen 

in Irvin et al. (2019), counting with 224 316 frontal and lateral images and 65 240 patients from 
the Standford Hospital. CheXpert is distinctive because it not only recognizes the presence of 12 

pathology-related classes, but also the presence of medical support devices and fractures, all 
described in radiology reports that were released along with the images . 

 
Figure 1: Eight common thoracic diseases observed in ChestX-ray8 and ChestX-ray14 

(Wang et al. 2017a) 

After that, Johnson et al. (2019a) released the MIMIC-CXR, making available 377 110 frontal and 
lateral views of 65 379 patients from the Beth Israel Deaconess Medical Center Emergency 

Department, along with text radiology reports. Another version of the same dataset was 
published, the MIMIC-CXR-JPG, where the images are in a JPG format instead of the original 

DICOM (Johnson et al. 2019b). The MIMIC-CXR was annotated with the same labels as CheXpert. 
Finally, PadChest became very recently available in Bustos et al. (2020), containing a total of 193 

labels applied to 160 868 frontal and lateral CXR images of 67 625 patients. It was collected from 
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the San Juan Hospital, considering radiology reports written in Spanish. Table 1 focuses on the 

multiple pathology datasets presented above and summarizes their content. 

As will be made clear in the following sections, the ChestX-ray14 is undoubtedly the benchmark 
dataset for CXR-based computer-aided diagnosis. For this reason, there are some important 
considerations to be made about its limitations. Firstly, the ChestX-ray14 labels were text-mined 
from radiology reports through natural language processing techniques, and no expert validation 

was performed to confirm if the final annotations match the image content. Instead, the 
annotated images were validated using the Open-I Indiana University dataset (F1 score of 0.90). 

This raises some questions regarding the accuracy of the annotations, namely how accurately 
these labels reflect the pathology(ies) present in each image. The lack of manual and expert-based 
verification does not ensure that the positive predictive values of the text-mined ground-truth 
match the positive predictive values one would achieve with the visual queues. In addition to 
that, the established labels are not detailed, in the sense that they do not provide information on 
the expected range of abnormalities beside those 14 pathologies (e.g. pacemakers and invasive 
lines), and that the “no finding” hypothesis does not guarantee a healthy observation - it simply 

ensures the absence of those 14 diseases (Yates, Yates, and Harvey 2018). Other issues can be 
addressed, such as the class imbalance among pathologies, or the relevance between the CXR 

images and some of the proposed annotations. 

To conclude, and while the overall lack of diversity impairs the ChestX-ray14’s generalization 
ability in heterogeneous real-world settings, this dataset has fuelled innovation and research and 
is considered highly valuable. Table 2 shows the labels and label distributions of ChestX-ray8, 

ChestX-ray14, and CheXpert, presenting these labels according to the groups defined in Irvin et 
al. (2019) for easier comparison. 

 
Year Dataset Patients Images Format CXR 

view 

Non-

normal 
labels 

2000 PLCO 56 071 185 421 TIFF frontal 12 

2015 Open-I Indiana 3996 8 121 DICOM frontal 10 
2017 ChestX-ray8 32 717 108 948 DICOM frontal 8 
2017 ChestX-ray14 30 805 112 120 PNG frontal 14 

2019 CheXpert 65 240 224 316 PNG frontal  
and lateral 

13 

2019 MIMIC-CXR 65 379 377 110 DICOM frontal 13 
 MIMIC-CXR-JPG   JPG and 

lateral  

 

2020 PadChest 67 625 160 868 DICOM frontal 
and 

lateral  

193 

Table 1: Description of multiple pathology CXR datasets  
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Label group CheXpert 
 

 
No finding 16 627 

Enlarged Cardiomediastinum Enlarged Cardiomediastinum 
Cardiomegaly 

9 020 
23 002 

Lung Opacity Lung Opacity 
Atelectasis 

Lung Lesion 
Pneumonia 
Consolidation 
Edema 

92 669 
29 333 

6 856 
4 576 
12 730 
48 905 

Pleural Pleural Other 

Effusion 
Pneumothorax 

2 441 

75 696 
17 313 

Others Fracture 
Support devices 

7 270 
105 
831 

Label group ChestX-ray8 ChestX-ray14 

 
No finding 84 312 No finding 60 412 

Enlarged Cardiomediastinum  Cardiomegaly 1 010 Cardiomegaly 2 772 

Lung Opacity Atelactasis 
Pneumonia 

5 789 
1 062 

Atelactasis 
Pneumonia 
Consolidation 

Edema 

11 535 
703 
4 667 

2 303 

Pleural Effusion 

Pneumothorax 

6 331 

2 793 

Effusion 

Pneumothorax 

13 307 

5 298 

Not contemplated in CheXpert  Infi ltration 
Mass 

Nodule 

10 317 
6 046 

1 971 

Infi ltration 
Mass 

Nodule 
Emphysema 
Fibrosis 
Pleural thickening 

Hernia 

19 871 
5 746 

6 323 
2 516 
1 686 
3 385 

227 

Table 2: Comparison of the ChestX-ray8, ChestX-ray14, and CheXpert annotations, with 
the respective number of samples in each class  

(adapted from Wang et al. (2017a) and Irvin et al. (2019)) 

3. Abnormality Detection 

Published work in this field has typically favored pathology classification rather than abnormality 
detection; yet, such detection task can have a high impact when it comes to building a triage 

system for the CXR images being analyzed. Several approaches can be established to define the 
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automated triage criteria of the patients’ images, i.e. which labels to consider.  While Tataru et al. 

(2017) suggest a more elaborate three label system (normal, abnormal. and emergent), the most 
common annotations are simply normal and abnormal. It is also possible to address the detection 

of a specific pathology, as tuberculosis (Sivaramakrishnan et al. 2018), pneumonia (Chouhan et 
al. 2020), or cardiomegaly (Islam et al. 2017), in which case the abnormal label stands for the 

presence of the considered condition. However, in this section only the generic normal and 
abnormal annotations will be considered, and so assuming a binary classification exercise. 

Current standard off-the-shelf CNN-based methods are frequently applied to detect 

abnormalities in CXR, and there are several papers which establish a comparison between well -
known architectures, as illustrated in Tang et al. (2020) and Dunnmon et al. (2019). In the first 
work, the authors consider the AlexNet (Krizhevsky, Sutskever, and Hinton 2017), VGG (Simonyan 
and Zisserman 2015), GoogLeNet (Szegedy et al. 2014), ResNet (He et al. 2015) and DenseNet 
(Huang et al. 2018), and the ChestX-ray14 dataset. Using transfer learning with pre-trained 
ImageNet weights (Deng et al. 2009), all CNNs achieved good results, with the DenseNet slightly 
outperforming the remaining methods. Regarding Dunnmon et al. (2019), which exploits a private 

database but also uses ImageNet weights, only the AlexNet, ResNet, and DenseNet were assessed 
for the automated binary triage, where the DenseNet surpassed the other networks. Yates, Yates, 

and Harvey (2018) used transfer learning on the Inception CNN (Szegedy et al. 2014), retraining 
its final layer to execute abnormality detection on a mixed of frontal CXR data from the ChestX-

ray14 and Open-I Indiana datasets. Besides using transfer learning to reduce the needed 
computational resources, the authors advise to skip data augmentation, arguing that it is unlikely 

to result in a reliable representation of any collected real datasets. This way, they gathered the 
normal Open-I Indiana CXR images (which unlike in ChestX-ray14 guarantee normality) and the 

14 pathology examples from the latter as abnormality-positive samples. The CXNet-m1 is 
presented in Xu, Wu, and Bie (2019) and has a reduced number of convolutional layers in 

comparison to VGG, ResNet, and DenseNet. Unlike the previous publications, the authors argue 

against transfer learning in this context due to the dissimilarity between medical images and 
ImageNet’s. Instead, they suggest that ChestX-ray14 is large enough to train a smaller CNN from 

scratch without time or memory limitations, proposing a hierarchical shorter CNN structure with 
an improved loss function (sin-loss) to address the information present in indistinguishable 

features and misclassified images. 

All these methodologies look at the task at hand as a binary classification problem, but there are 
alternatives to approach abnormality detection. One of them is considering it a one-class exercise, 

where the goal is to classify a specific category of data amongst all observations, by primarily 
learning from a training set containing merely the objects of that class. Tang et al. (2019) adopt 

this research line and suggest an end-to-end architecture for abnormality detection using 
generative adversarial one-class learning and ChestX-ray14 (Figure 2). For this reason, the 
network only takes a normal CXR as input, which go through three main modules: a  U-Net 
autoencoder (Ronneberger, Fischer, and Brox 2015), a CNN discriminator, and an encoder, which 
compete during the learning task while collaborating for the target task. Considering the model 

is trained exclusively on normal observations, the adversarial generative model is able to 
reconstruct a normal CXR, but performs poorly on an abnormal image, thus gaining the ability to 

distinguish both situations based on the reconstruction differentiation. A one-class autoencoder-
based approach is also implemented in Mao et al. (2020), taking normal samples and outputting 
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the reconstructed normal version of the images with an associated pixel-wise uncertainty. This 

way, abnormal observations in ChestX-ray14 can be identified considering the uncertainty-
weighted reconstruction error as a measurement for abnormality presence. Both these 

publications are valuable in cases where annotating all abnormalities is impractical for large scale 
training or cannot be obtained (e.g. rare forms of abnormality that are difficult to collect). 

 
Figure 2: Architecture of a deep adversarial one-class learning model for abnormality 

detection (Tang et al. 2019) 

While Shvetsova et al. (2020) agree that the autoencoders’ implicit modelling of more complex 
data distribution is great for medical abnormality detection, the authors suggest to soften the one-
class assumption. In other words, the authors skip an unsupervised detection where no abnormal 

observations are taken into account during the model’s training, and instead use a limited subset 
of abnormal images to initiate hyperparameter search and grant the model a more flexible 

understanding of normality. Consequently, the deep perceptual autoencoder is capable of 
learning common patterns between normal observations and so accurately restore them, using 

the perceptual loss function to measure pattern dissimilarity. This works by minimizing the 
difference between the normalized features of the original and reconstructed images. Also 

evaluated on ChestX-ray14, the overall framework is represented in Figure 3. 

 
Figure 3: The proposed deep perceptual autoencoder for image anomaly detection: g 

denotes the autoencoder network, f denotes a feature extractor, x is an image, and 
x̂ = g(x) is a reconstructed “image”. Reconstruction loss Lrec calculates difference 

between deep features f (x) and f (x̂) (Shvetsova et al. 2020) 

Finally, a different approach is proposed in Kieu et al. (2018) to tackle this decision, in which a 
private dataset goes through three different CNNs simultaneously (Multi-CNNs), represented in 

Figure 4. One of the networks takes the full CXR image, while the other two take either the left or 
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right half of the same image, to ensure both sides are equally analysed. They all output the 

probability of normality and abnormality, which are then combined in a fusion rule to compute 
the final decision. 

 
Figure 4: Architecture of the Multi -CNNs model (Kieu et al. 2018) 

Table 3 summarizes the results of all the previously mentioned papers which evaluate their 
methodologies on publicly available datasets, highlighting the highest scores. While Yates, Yates, 
and Harvey (2018) and Tang et al. (2020) employ the standard off-the-shelf Inception and 

DenseNet CNNs respectively, Shvetsova et al. (2020) propose to train an autoencoder with a 
limited number of abnormal samples. Note that these results correspond to the best detection 

experiment in each paper and cannot be directly compared, as they may consider different 
databases or subsets of the same database. Further information on the data splits for validation 
and testing of the models can be found in the original publications. 

Publication AUC Publication AUC 

Yates, Yates, and Harvey 
(2018)  

0.980 Mao et al. (2020)  0.780 

Xu, Wu, and Bie (2019)  0.795 Shvetsova et al. (2020)  0.926 

Tang et al. (2019)  0.841 Tang et al. (2020)  0.980 

Table 3: AUC scores for the mentioned CXR abnormality detection publications that are 
evaluated on public datasets. The highest performances are in bold. 

4. Multi-label Thoracic Pathology Classification 

The automatic identification of multiple pathologies in CXR is a much more common exercise in 
comparison to general abnormality detection. Consequently, there is a higher number of 
published articles with this particular aim, which often ally the classification with a location task. 
In such cases, the goal is not only to identify the pathologies present in the image, but also where 
they appear to be. While most papers presented in this section combine the two aspects, the focus 

of analysis will be the methodology and performance of their classification task. Nonetheless, it 
is still relevant to address that several articles seek to interpret their results with heat maps 

(frequently achieved with class activation mapping) to highlight class -specific regions of images 
and better demonstrate what the network considered relevant for pathology identification. 
Additionally, it is also common practice to use transfer learning with pre-trained ImageNet weights 
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to speed the convergence of the classification models. All mentioned papers follow this 

procedure, unless stated otherwise. 

As previously introduced, the work presented in this section tackles a multi-label classification 
exercise, meaning multiple pathologies can be identified in the same image. Perhaps one of the 
most popular publications for such purpose is the CheXNet’s Rajpurkar et al. (2017), which is a 
classical example of a simple DenseNet implementation. Urinbayev et al. (2020) follow a similar 

approach to the CheXNet’s, incorporating it in a more comprehensive end-to-end diagnosis 
framework, and claiming to outperform the state-of-the-art by using a more robust version of the 

Adam optimizer, known as RAdam. This is a variation that provides an automated, dynamic 
adjustment to the adaptive learning rate. Furthermore, Kumar, Grewal, and Srivastava (2018) 
apply the DenseNet in a boosted cascaded context without any transfer learning. The authors  
argue it is able to model complex dependencies among class labels, whilst taking advantage of 
the boosting strategy during training compared to single classifiers. Gündel et al. (2019) go a step 
further and use a DenseNet variant to propose the location-aware DNetLoc, which opposes class 
imbalance with additional weights within the loss function. These weights are tuned based on the 

label frequency per batch. 

The ResNet is also a frequent option for image classification, as exemplified in Li et al. (2018). 
Here, the authors attempt to classify and locate the pathologies with limited supervision and a 

single model. More specifically, by slicing the image into a patch grid, the model is able to capture 
local information on each disease, while at the same time considering information present in the 
whole image. Alternatively, one can combine the ResNet and DenseNet to build the DualCheXNet 

by Chen et al. (2019). Its novel dual asymmetric architecture, i.e. with two asymmetric networks  
depicted in Figure 5, adaptively captures more discriminative features of several pathologies. In 

other words, since the DenseNet and ResNet capture different and unique features, the network 
is able to learn complementary details, thus increasing its performance. The two asymmetric 
feature streams are later combined with a fusion classifier, and evaluated based on a unified loss 
function, which is a variation of the weighted cross entropy loss with a modulating factor to deal 
with class imbalance. 

 
Figure 5: Schematic of the DualCheXNet (Chen et al. 2019) 

Li et al. (2018) suggested limited supervision, but in fact several approaches have been 
implemented with weakly supervised networks. For instance, the original ChestX-ray8 
publication, Wang et al. (2017a), highlight a ResNet-based approach for classification and location 
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within a unified weakly supervised setting, considering different loss functions and pooling 

strategies. Simultaneously, Yan et al. (2018) tackle the same goals and context by enhancing the 
DenseNet with squeeze-and-excitation blocks and multi-map transfer. These contribute to boost 

the model’s sensitivity to subtle differences between normal and abnormal regions, and the 
learning process of disease-specific features, respectively. Zhang, Chen, and Chen (2020) suggest 

a weakly supervised distance learning framework which, by learning discriminative features 
among triplets of images, is able to discriminate subtle disease characteristics. As shown in Figure 

6, the network considers a pair of images that share the class annotation, and another image 
which does not. By comparing the unannotated observation (anchor) with images whose 
pathology is known (positive/negative), the network is able to differentiate the classes by 
imposing a similarity metric to be lower when image pairs share a similar disease, and higher 
when there is nothing in common. In addition, the approach also trains a different classifier on 
region features to verify if the attentive regions contain information indicative of any disease.  

This leads to another trend called attention learning, where the approaches selectively focus on 

relevant image regions to assess the presence of the pathologies. Guan et al. (2018) support these 

methods and defend that irrelevant noisy areas are present during global image training. In Figure 
7, the authors provide an example of an attention-guided DenseNet (AG-CNN) with three 

branches, to learn from both the disease- specific regions, solving the noise issue, and the global 
image information, avoiding the loss of discriminative clues. Another example is given in the 

A3Net’s triple attention learning strategy (Wang et al. 2021). Here, a model with a DenseNet 
backbone encompasses three learning modules with channel-wise, element-wise, and scale-wise 

attention. Each of these grants information on the most discriminative feature channels, regions 
of interest, and scales, respectively. Moving on to Guan and Huang (2020), category-wise residual 

attention learning (CRAL) embraces the classification exercise with a class-specific attentive view. 
This means that the relevance of the features is endorsed by weights based on each category and 

region, and that these scores are then embedded into a DenseNet’s attention blocks to output a 

final classification. To conclude, Liu et al. (2019) present a contrast-induced attention network 
(CIA-Net) for disease classification and location based on the contrastive learning of positive and 

negative observations. In detail, the framework starts by adjusting all images in terms of scale 
and angles, to take advantage of a highly structured input and so compute a distance between 

corresponding pixel coordinates in the positive and negative samples. The distances act as an 
indication of the lesion areas, thus assisting the contrast induced attention branch of the CIA-Net 

in the final prediction. Note that this particular branch generates attention for every label when 

analysing a pair of negative and positive images. 
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Figure 6: A distance learning based model for thoracic pathology classification and 

location (Zhang, Chen, and Chen 2020) 

Considering that all the papers mentioned in this section evaluated their thoracic pathology 
classification models on the ChestX-ray14, Table 4 presents the 14 labels established for this 

dataset, along with the metrics achieved by each publication, i.e. their AUC scores per class and 
mean AUC scores. The mean values are present in the last column, which highlights the three 

highest scores. All highlighted publications focus on capturing more discriminative characteristics 
of each pathology present in the images. Guan et al. (2018) identify those subtle features by 

implementing an attention-guided CNN with three branches, while Chen et al. (2019) do that by 
combining the ResNet and the DenseNet. Finally, Zhang, Chen, and Chen (2020) opted for a 

weakly supervised distance learning approach to spot the same indicative attributes. It is 

important to once again remind that the same data split is not guaranteed, and so it is not possible 
to establish a direct comparison of the publications. However, one can perceive that there is an 

overall consistency between the performance values. 

 
Figure 7: Overall  structure of the Attention Guided Convolutional Neural Network (AG-

CNN) (Guan et al. 2018) 
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Publication Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia 

Rajpurkar et al. (2017) 0.809 0.925 0.864 0.735 0.868 0.780 0.768 
Wang et al. (2017a) 0.700 0.810 0.759 0.661 0.693 0.669 0.658 
Kumar, Grewal, and 

Srivastava (2018) 
0.743 0.893 0.862 0.675 0.789 0.704 0.638 

Li  et a l . (2018) 0.700 0.870 0.870 0.700 0.830 0.750 0.670 

Guan et al. (2018) 0.853 0.939 0.903 0.754 0.902 0.828 0.774 
Yan et a l. (2018) 0.792 0.881 0.842 0.710 0.847 0.811 0.740 
Gündel et al. (2019) 0.826 0.911 0.885 0.716 0.854 0.774 0.765 

Chen et a l. (2019) 0.836 0.917 0.889 0.717 0.863 0.824 0.783 
Liu et a l. (2019) 0.790 0.870 0.880 0.690 0.810 0.730 0.750 
Guan and Huang 
(2020) 

0.781 0.883 0.831 0.697 0.830 0.764 0.725 

Urinbayev et a l. (2020) 0.810 0.910 0.870 0.720 0.850 0.780 0.740 
Zhang, Chen, and Chen 
(2020) 

0.845 0.905 0.877 0.817 0.859 0.824 0.804 

Wang et al. (2021) 0.779 0.895 0.836 0.710 0.834 0.777 0.737 
Publ ication Pneumothorax 

Consolidation 

Edema Emphysema Fibrosis Pleural Thick. Hernia  

 
AUC 

Rajpurkar et al. 
(2017) 

0.889 0.790 0.888 0.937 0.805 0.806 0.916 0.837 

Wang et al. (2017a) 0.799 0.703 0.805 0.833 0.786 0.684 0.872 0.731 

Kumar, Grewal, and 
Srivastava (2018) 

0.853 0.760 0.882 0.916 0.752 0.757 0.864 0.775 

Li  et a l . (2018) 0.870 0.800 0.880 0.910 0.780 0.790 0.770 0.795 
Guan et al. (2018) 0.921 0.842 0.924 0.932 0.864 0.837 0.921 0.883 
Yan et a l. (2018) 0.876 0.760 0.848 0.942 0.833 0.808 0.934 0.837 

Gündel et al. (2019) 0.872 0.806 0.892 0.925 0.820 0.785 0.941 0.840 
Chen et a l. (2019) 0.893 0.815 0.901 0.948 0.862 0.806 0.947 0.863 
Liu et a l. (2019) 0.890 0.790 0.910 0.930 0.800 0.800 0.920 0.805 
Guan and Huang 

(2020) 

0.866 0.758 0.853 0.911 0.826 0.780 0.918 0.828 

Urinbayev et a l. 
(2020) 

0.900 0.790 0.910 0.920 0.810 0.790 0.990 0.830 

Zhang, Chen, and 
Chen (2020) 

0.871 0.810 0.862 0.896 0.849 0.829 0.927 0.854 

Wang et al. (2021) 0.878 0.759 0.855 0.933 0.838 0.791 0.938 0.835 

Table 4: Performance comparison for thoracic pathology classification, minding the 
AUC score per ChestX- ray14 class. The highest average AUC scores are in bold. 

5. Conclusions 

Computer-aided diagnosis seeks to provide a second opinion to healthcare professionals, reducing 

their workload and promoting a more accurate early diagnosis. These systems are particularly 
important to analyse CXR images containing complex information on a variety of pathologies that 

affect vital organs. Recent advances in DL strategies and computational resources have led to a 
steep performance increase in CXR-based computer-aided diagnosis algorithms, which also 

escalated due to the availability of larger annotated public CXR datasets. The present publication 
grants a description of the most relevant public annotated CXR datasets, as well as a 

comprehensive state-of-the-art review on two particular tasks - abnormality detection and 
thoracic pathology classification. One may notice that all selected papers were published in or 

after 2017, which is expected because they follow the recent release of the most popular datasets 
and the prominent DL trend. It is also noticeable that the results published for each task show no 

significant disparity, i.e. similar performance. In terms of abnormality detection, the leading 
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publications concentrate mainly on standard off-the-shelf CNNs, which can be combined with one-

class learning or fusion rule-based classification. In thoracic pathology classification, besides the 
same common CNNs, special attention is given to weakly supervised approaches and attention 

learning. To conclude, this publication provides an overview on the current knowledge on 
abnormality detection and thoracic pathology identification by describing and comparing a 

selected set of papers, considered by the authors as the most relevant in the field, in order to 
promote future research in this area. 
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