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Abstract 
Advances in machine learning frameworks l ike PyTorch provides users  with various 
machine learning algorithms together with general purpose operations. PyTorch 

framework provides Numpy like functions and makes it practical  to use 
computational resources for accelerating computations. Also users may define their 
custom layers or operations for feature extraction algorithms based on the tensor 

operations. In this paper, Local Binary Patterns (LBP) which is one of the important 
feature extraction approaches in computer vision were realized using tensor 
operations of PyTorch framework. The algorithm was written both using Python 
code with standard libraries and tensor operations of PyTorch in Python. According 

to experimental measurements which were realized for various batches of images, 
the algorithm based on tensor operations considerably reduced the computation 
time and provides significant accelerations over Python implementation with 

standard libraries. 
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1. Introduction 

Machine learning applications usually involves special preprocessing for feature extraction 

and these can have significant effect on the success of the designed model. Especially 

developing a deep learning model may require defining custom layers for better feature 

extraction and training the model usually involve large datasets . When Python script with 

standard libraries are used for writing programs computation times may increase 

considerably, depending on the size of the dataset and the type of the processed data. 

Because Python is an interpreter based language, evaluation of the program script line by line 

usually increases the computation time specifically for loop operations. Various libraries like 

PyTorch are provided to make computations faster for machine learning algorithms as well as 

practical. PyTorch frameworks includes compiled algorithms mainly designed for machine 

learning and deep learning applications such as natural language processing , sequence 

processing and computer vision. Using the tensors of PyTorch frame work for writing a custom 

operation eliminates, if possible, most of the loops and it enables efficient utilization of 

computational resources. Custom operations can be used to build custom layers in machine 

learning and deep learning applications (Paszke et al. 2019). Various researchers design their 

frameworks, custom layers, custom loss functions or custom operations based on the 

available PyTorch operations such as a kernel design for xnor and bitcount computations  (Xu 
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and Pedersoli 2019), Bayesian optimization framework in PyTorch (Balandat et al. 2019), 

normalized convolutional neural network (Kim et al. 2020). 

Some of the deep learning applications requires preprocessing of special layers for feature 

extraction that are not exist in the algorithms of PyTorch library. In such cases programmers  

may define their custom layers based on the present operations  without writing a tensor 

operation from scratch. In computer vision applications, one of the important feature 

extraction approaches is the LBP transform (Pietikäinen et al. 2011; Pietikäinen 2010). Due to 

efficient and computationally lightweight structure, it has been used in various machine 

learning applications such as LBP network for face recognition (Xi et al. 2016), facial expression 

recognition (Rahul, Kohli, and Agarwal 2020), image forgery detection (Alahmadi et al. 2017), 

acoustic scene classification (Yang and Krishnan 2017), dermoscopic skin lesion image 

segmentation (Pereira et al. 2020), Hyperspectral image classification (Tu et al. 2019), on-road 

vehicle detection in urban traffic scene (Hassaballah, Kenk, and El-Henawy 2020). 

Computer vision algorithms like LBP usually requires high CPU usage due to various matrix 

multiplications and additions. In the cases of machine learning or deep learning model 

developments, computational power need increases further as the dataset and the image 

dimensions to be processed are increased. In this work, a custom function for the accelerating 

the computation of LBP transform was implemented based on the available PyTorch 

operations. Various dimensions of images up to 448448 were used in the performance 

evaluations. Also the effect of batch size were evaluated by changing the number of images in 

test batches up to 256. In order to obtain acceleration results, LBP algorithm was also 

implemented using standard Python functions. In the following section, the details about LBP 

transform and PyTorch implementation for the LBP were introduced. Experimental running 

time evaluations were presented in Section 3. Discussions and concluding remarks were given 

in the final section. 

2. Materials and Methods 

2.1. Local binary patterns 

LBP is an efficient as a pattern descriptor that has been used in various computer vision 

applications (Ojala, Pietikäinen, and Mäenpää 2002) including machine learning and deep 

learning applications. LBP transform involves checking the neighbors of a pixel within a given 

radius with the center pixels. According to the results of each comparison, an LBP value is 

formed as a result. A general representation for LBP transform for a given pixel is given by  

Formula 1. In this equation, R is the radius of the area, K is the number of neighbors, pc and pk 

represents the center pixel and a selected neighbor pixel respectively. The function f(.) 

represents a comparison function. In the application of this equation, sum operator selects a 

neighbor pixel and compare it with the pixel at the center. If the pixel at the center is smaller, 

corresponding value is set to 2k otherwise it is set to zero. This is repeated for all neighbors to 

complete transform. 
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In the present study, 3×3 window which is the common case in practice was used. Hence, the 

number of neighbors was set to 9 and radius was set to 3. Figure 1 shows an example 
computation for a selected pixel. Once a neighbor is selected for comparison, the result is 

added to sum. According to formula, the first neighbor forms the Least Significant Bit (LSB) 
and the last neighbor forms the Most Significant Bit (MSB) when the result is considered in 

binary form. This operation is repeated for all pixels in order to obtain LBP transform. An 
example image and its LBP equivalent are shown by Figure 2. 

 
Figure 1: An example image input image on the left and its LBP transform output 

on the right 

 
Figure 2: Example images on their visualized LBP transform outputs  

2.2. PyTorch implementation 

Python is one of the mostly preferred programming languages for machine learning and 

scientific computations. On the other hand, Python programs usually take long running times 

when the costly algorithms written using scripts instead of compiled functions. PyTorch is one 

of the popular frameworks that provides various accelerated algorithms for developing 

machine learning and deep learning applications. It is designed to work with tensor based 

algorithms that enables accelerated computation. As its name implies PyTorch is primarily 

designed for Python programming language, but it also provides language bindings for Java 
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and C++ as well as working on various operating systems as shown by Figure 3 where the 

hierarchical structure of the framework is given. 

 
Figure 3: Hierarchical structure of PyTorch (Paszke et al. 2019) 

Data types in PyTorch are defined by multi-dimensional matrices which are called as tensor. 

These enables the utilization of optimized algorithms that work, if exist, on multicore CPU and 

CPU devices. There are various tensor operation such as add() for adding tensors, mul() for 

multiplying each element of the tensor and ge() for greater and equal comparison. These can 

be used to design custom operations for specific purposes. LBP algorithm contains 

independent pixels operations and these can be computed using matrix definitions instead of 

using two for-loop to travel through the pixels of the image. The center and neighbor pixels 

can be selected in the form of matrices as described by Figure 4. Therefore total nine matrix 

which are P1,…,P9 and PC are used to compute Formula 1 at one time. The comparison 

operations are all realized in the matrix form as well as addition and multiplication operations. 

Element wise comparison of selected area for the center pixel matrix with the selected areas 

for neighbor matrices leads to matrices of comparison results in the form of ones and zeros 

as shown by Figure 5. This comparison in PyTorch can be realized with ge() operator. 

 
Figure 4: Neighbor selection approach on the example input 
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Figure 5: Comparison results with the PC matrix and computing LBP values  

After the first comparison is done, the resulting matrix is multiplied with 20 as previously given 

by Formula 1 and then the result is written to a temporary variable. Similarly, after the second 

comparison and multiplication obtained results is accumulated in the temporary variable. 

Following computations for the other pixels are realized in the same way and the results 

accumulated in the temporary variable for the LBP transform. Element wise multiplications 

and addition of the resulting matrices can be done using mul() and add() tensors respectively. 

A verification test was done by comparing the results of each method for a given random input 

matrix as shown console outputs given by Figure 6. For both approach the input matrices are 

zero padded to maintain image size. According to outputs, tensor based approach produces  

the desired results. 

 
Figure 6: Example verification results using Python and PyTorch for a given ra ndom 

matrix. The input is zero padded to protect dimensions 

3. Experiments 

Performance measurements were done on a hardware that has an Intel(R) Core(TM) i7-

4710MQ which is a four-core CPU with eight threads. Python 3.7.4 and PyTorch 1.3.0 on 

Windows 10 operating system. Running times of the algorithm were measured with the time() 

function of time library in Python. Image dimensions were selected as 2828, 5656, 112112, 

224224 and 448448 which are close to the dimensions used in deep learning applications. 
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Also the size of test batches were selected as 2n where n is varied between 0 and 7. Images 

for performance measurements were examined on images used from ImageNet [19] dataset 

and these images were scaled to test dimensions in each case. Although there may be small 

differences for the computation of Formula 1 due to if-else blocks, the number of pixel 

operations are independent from the pixel contents. Hence, contents of the images have 

trivial impact on the processing times for images in the same dimensions and the same size of 

batches are close to each other. 
 

2828 5656 112112 224224 448448 

1 0.0159 0.0646 0.2526 1.0367 4.1352 
2 0.0319 0.1269 0.5021 2.0516 8.3094 
4 0.0643 0.2559 1.0145 4.1181 16.540 
8 0.1281 0.5022 2.0409 8.1713 32.913 

16 0.2598 1.0312 4.0453 16.371 65.848 

32 0.5040 1.9953 8.1727 33.205 131.30 

64 1.0207 4.0368 16.189 69.582 265.92 
128 2.0119 8.0721 32.520 131.26 530.73 
256 4.0422 16.050 64.610 261.32 1053.8 

Table 1: Python implementation running times (seconds) 

  
2828 5656 112112 224224 448448 

1 0.0003 0.0005 0.0009 0.0010 0.0218 

2 0.0004 0.0006 0.0014 0.0020 0.0460 
4 0.0005 0.0009 0.0012 0.0201 0.0878 
8 0.0006 0.0014 0.0022 0.0442 0.1774 

16 0.0009 0.0013 0.0215 0.0847 0.3539 
32 0.0015 0.0030 0.0434 0.1790 0.6909 

64 0.0016 0.0206 0.0835 0.3405 1.3521 
128 0.0023 0.0433 0.1710 0.6759 2.5744 
256 0.0212 0.0854 0.3585 1.3467 4.9751 

Table 2: PyTorch running times (seconds) 

 

 
Figure 7: CPU util ization graphs for a) Python and b) PyTorch 
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Table 1 shows example execution durations for Python implementation with standard 

libraries. For small sizes of images and small sizes of batches, the running times measured are 

considerably small. As the number of images or the image dimensions are increased, the 

execution times are also increased significantly. In the case of PyTorch based implementation, 

computation times are considerably reduced as shown by Table 2. When the CPU utilization 

graphs are examined, PyTorch significantly increase the CPU utilization when compared with 

the standard implementation as shown by Figure 7. The speedup results provided by PyTorch 

over Python implementation with standard libraries are given by Figure 8. The acceleration is 

mainly the result of compiled code and multicore CPU utilization. Differences among the 

speedup results for different batch sizes and image sizes are mainly depends on the 

management of threads, behavior of multicore CPU and the number of pixels operations. 

 
Figure 8: PyTorch speed-up over Python implementation for a) 2828 image, b) 

112112 image c) 448448 image 

4. Discussions and Conclusions 

The running times for Python scripts is usually longer than the compiled algorithms since it is 

an interpreted language and executes the code interpreting it line by line. Comparison with 

PyTorch implementation show that compiled operations provide significant accelerations 
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together with multicore implementation. Script implementation usually utilizes one CPU core 

and the increase in the computation times are approximately linear according to the number 

of pixels operations which are determined by image dimensions and batch size. For example 

the computation time for a 112112 image where batch size is set to 16 is about 4.04 second. 

If the batch size is increased to 32 for the same image the computation time is increased to 

about 8.17 seconds which is nearly 2 times higher than the results for the batch size of 16. 

Similar behavior is not always observed in PyTorch results. For example the computation times 

for a 112112 image are 0.0009 and 0.0014 for batch sizes 1 and 2 respectively. This can be 

related to the small computation times, multicore computations and variations in CPU 

frequency, and cache memory size. In general PyTorch library, reduces computation time to 

practical levels and in the case of more CPU with more cores or GPU support the results will 

improve especially for processing large sizes of data. Implemented, algorithm for LBP 

computations can be utilized as a feature extraction layer in various machine learning and 

deep learning algorithms for computer vision applications. 
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