
U.Porto Journal of Engineering, 7:4 (2021) 61-69
ISSN 2183-6493
DOI: 10.24840/2183-6493_007.004_0005

Received: 12 January, 2021
Accepted: 18 April, 2021

Published: 26 November, 2021

61

A PyTorch Operations Based Approach for Computing
Local Binary Patterns

Devrim Akgun
Department of Software Engineering, Faculty of Computer and Information Sciences, Sakarya

University, 54050 Sakarya, Turkey (dakgun@sakarya.edu.tr) ORCID 0000-0002-0770-599X

Abstract
Advances in machine learning frameworks l ike PyTorch provides users with various
machine learning algorithms together with general purpose operations. PyTorch

framework provides Numpy like functions and makes it practical to use
computational resources for accelerating computations. Also users may define their
custom layers or operations for feature extraction algorithms based on the tensor

operations. In this paper, Local Binary Patterns (LBP) which is one of the important
feature extraction approaches in computer vision were realized using tensor
operations of PyTorch framework. The algorithm was written both using Python
code with standard libraries and tensor operations of PyTorch in Python. According

to experimental measurements which were realized for various batches of images,
the algorithm based on tensor operations considerably reduced the computation
time and provides significant accelerations over Python implementation with

standard libraries.

Author Keywords. PyTorch, Local Binary Patterns, Feature Extraction, Machine
Learning.

Type: Research Article

 Open Access Peer Reviewed CC BY

1. Introduction

Machine learning applications usually involves special preprocessing for feature extraction

and these can have significant effect on the success of the designed model. Especially

developing a deep learning model may require defining custom layers for better feature

extraction and training the model usually involve large datasets . When Python script with

standard libraries are used for writing programs computation times may increase

considerably, depending on the size of the dataset and the type of the processed data.

Because Python is an interpreter based language, evaluation of the program script line by line

usually increases the computation time specifically for loop operations. Various libraries like

PyTorch are provided to make computations faster for machine learning algorithms as well as

practical. PyTorch frameworks includes compiled algorithms mainly designed for machine

learning and deep learning applications such as natural language processing , sequence

processing and computer vision. Using the tensors of PyTorch frame work for writing a custom

operation eliminates, if possible, most of the loops and it enables efficient utilization of

computational resources. Custom operations can be used to build custom layers in machine

learning and deep learning applications (Paszke et al. 2019). Various researchers design their

frameworks, custom layers, custom loss functions or custom operations based on the

available PyTorch operations such as a kernel design for xnor and bitcount computations (Xu

https://doi.org/10.24840/2183-6493_007.004_0005
mailto:dakgun@sakarya.edu.tr
https://orcid.org/0000-0002-0770-599X

A PyTorch Operations Based Approach for Computing Local Binary Patterns
Devrim Akgun

U.Porto Journal of Engineering, 7:4 (2021) 61-69 62

and Pedersoli 2019), Bayesian optimization framework in PyTorch (Balandat et al. 2019),

normalized convolutional neural network (Kim et al. 2020).

Some of the deep learning applications requires preprocessing of special layers for feature

extraction that are not exist in the algorithms of PyTorch library. In such cases programmers

may define their custom layers based on the present operations without writing a tensor

operation from scratch. In computer vision applications, one of the important feature

extraction approaches is the LBP transform (Pietikäinen et al. 2011; Pietikäinen 2010). Due to

efficient and computationally lightweight structure, it has been used in various machine

learning applications such as LBP network for face recognition (Xi et al. 2016), facial expression

recognition (Rahul, Kohli, and Agarwal 2020), image forgery detection (Alahmadi et al. 2017),

acoustic scene classification (Yang and Krishnan 2017), dermoscopic skin lesion image

segmentation (Pereira et al. 2020), Hyperspectral image classification (Tu et al. 2019), on-road

vehicle detection in urban traffic scene (Hassaballah, Kenk, and El-Henawy 2020).

Computer vision algorithms like LBP usually requires high CPU usage due to various matrix

multiplications and additions. In the cases of machine learning or deep learning model

developments, computational power need increases further as the dataset and the image

dimensions to be processed are increased. In this work, a custom function for the accelerating

the computation of LBP transform was implemented based on the available PyTorch

operations. Various dimensions of images up to 448448 were used in the performance

evaluations. Also the effect of batch size were evaluated by changing the number of images in

test batches up to 256. In order to obtain acceleration results, LBP algorithm was also

implemented using standard Python functions. In the following section, the details about LBP

transform and PyTorch implementation for the LBP were introduced. Experimental running

time evaluations were presented in Section 3. Discussions and concluding remarks were given

in the final section.

2. Materials and Methods

2.1. Local binary patterns

LBP is an efficient as a pattern descriptor that has been used in various computer vision

applications (Ojala, Pietikäinen, and Mäenpää 2002) including machine learning and deep

learning applications. LBP transform involves checking the neighbors of a pixel within a given

radius with the center pixels. According to the results of each comparison, an LBP value is

formed as a result. A general representation for LBP transform for a given pixel is given by

Formula 1. In this equation, R is the radius of the area, K is the number of neighbors, pc and pk

represents the center pixel and a selected neighbor pixel respectively. The function f(.)

represents a comparison function. In the application of this equation, sum operator selects a

neighbor pixel and compare it with the pixel at the center. If the pixel at the center is smaller,

corresponding value is set to 2k otherwise it is set to zero. This is repeated for all neighbors to

complete transform.

A PyTorch Operations Based Approach for Computing Local Binary Patterns
Devrim Akgun

U.Porto Journal of Engineering, 7:4 (2021) 61-69 63

𝐿𝐵𝑃𝐾,𝑅(𝑖, 𝑗) = ∑𝑓(𝑝𝑘 ,𝑝𝑐)2
𝑘

𝐾−1

𝑘=0

𝑓(𝑝𝑐 , 𝑝𝑛) = {
1
0

𝑝𝑐 < 𝑝𝑛
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}

 (1)

In the present study, 3×3 window which is the common case in practice was used. Hence, the

number of neighbors was set to 9 and radius was set to 3. Figure 1 shows an example
computation for a selected pixel. Once a neighbor is selected for comparison, the result is

added to sum. According to formula, the first neighbor forms the Least Significant Bit (LSB)
and the last neighbor forms the Most Significant Bit (MSB) when the result is considered in

binary form. This operation is repeated for all pixels in order to obtain LBP transform. An
example image and its LBP equivalent are shown by Figure 2.

Figure 1: An example image input image on the left and its LBP transform output

on the right

Figure 2: Example images on their visualized LBP transform outputs

2.2. PyTorch implementation

Python is one of the mostly preferred programming languages for machine learning and

scientific computations. On the other hand, Python programs usually take long running times

when the costly algorithms written using scripts instead of compiled functions. PyTorch is one

of the popular frameworks that provides various accelerated algorithms for developing

machine learning and deep learning applications. It is designed to work with tensor based

algorithms that enables accelerated computation. As its name implies PyTorch is primarily

designed for Python programming language, but it also provides language bindings for Java

A PyTorch Operations Based Approach for Computing Local Binary Patterns
Devrim Akgun

U.Porto Journal of Engineering, 7:4 (2021) 61-69 64

and C++ as well as working on various operating systems as shown by Figure 3 where the

hierarchical structure of the framework is given.

Figure 3: Hierarchical structure of PyTorch (Paszke et al. 2019)

Data types in PyTorch are defined by multi-dimensional matrices which are called as tensor.

These enables the utilization of optimized algorithms that work, if exist, on multicore CPU and

CPU devices. There are various tensor operation such as add() for adding tensors, mul() for

multiplying each element of the tensor and ge() for greater and equal comparison. These can

be used to design custom operations for specific purposes. LBP algorithm contains

independent pixels operations and these can be computed using matrix definitions instead of

using two for-loop to travel through the pixels of the image. The center and neighbor pixels

can be selected in the form of matrices as described by Figure 4. Therefore total nine matrix

which are P1,…,P9 and PC are used to compute Formula 1 at one time. The comparison

operations are all realized in the matrix form as well as addition and multiplication operations.

Element wise comparison of selected area for the center pixel matrix with the selected areas

for neighbor matrices leads to matrices of comparison results in the form of ones and zeros

as shown by Figure 5. This comparison in PyTorch can be realized with ge() operator.

Figure 4: Neighbor selection approach on the example input

A PyTorch Operations Based Approach for Computing Local Binary Patterns
Devrim Akgun

U.Porto Journal of Engineering, 7:4 (2021) 61-69 65

Figure 5: Comparison results with the PC matrix and computing LBP values

After the first comparison is done, the resulting matrix is multiplied with 20 as previously given

by Formula 1 and then the result is written to a temporary variable. Similarly, after the second

comparison and multiplication obtained results is accumulated in the temporary variable.

Following computations for the other pixels are realized in the same way and the results

accumulated in the temporary variable for the LBP transform. Element wise multiplications

and addition of the resulting matrices can be done using mul() and add() tensors respectively.

A verification test was done by comparing the results of each method for a given random input

matrix as shown console outputs given by Figure 6. For both approach the input matrices are

zero padded to maintain image size. According to outputs, tensor based approach produces

the desired results.

Figure 6: Example verification results using Python and PyTorch for a given ra ndom

matrix. The input is zero padded to protect dimensions

3. Experiments

Performance measurements were done on a hardware that has an Intel(R) Core(TM) i7-

4710MQ which is a four-core CPU with eight threads. Python 3.7.4 and PyTorch 1.3.0 on

Windows 10 operating system. Running times of the algorithm were measured with the time()

function of time library in Python. Image dimensions were selected as 2828, 5656, 112112,

224224 and 448448 which are close to the dimensions used in deep learning applications.

A PyTorch Operations Based Approach for Computing Local Binary Patterns
Devrim Akgun

U.Porto Journal of Engineering, 7:4 (2021) 61-69 66

Also the size of test batches were selected as 2n where n is varied between 0 and 7. Images

for performance measurements were examined on images used from ImageNet [19] dataset

and these images were scaled to test dimensions in each case. Although there may be small

differences for the computation of Formula 1 due to if-else blocks, the number of pixel

operations are independent from the pixel contents. Hence, contents of the images have

trivial impact on the processing times for images in the same dimensions and the same size of

batches are close to each other.

2828 5656 112112 224224 448448

1 0.0159 0.0646 0.2526 1.0367 4.1352
2 0.0319 0.1269 0.5021 2.0516 8.3094
4 0.0643 0.2559 1.0145 4.1181 16.540
8 0.1281 0.5022 2.0409 8.1713 32.913

16 0.2598 1.0312 4.0453 16.371 65.848

32 0.5040 1.9953 8.1727 33.205 131.30

64 1.0207 4.0368 16.189 69.582 265.92
128 2.0119 8.0721 32.520 131.26 530.73
256 4.0422 16.050 64.610 261.32 1053.8

Table 1: Python implementation running times (seconds)

2828 5656 112112 224224 448448

1 0.0003 0.0005 0.0009 0.0010 0.0218

2 0.0004 0.0006 0.0014 0.0020 0.0460
4 0.0005 0.0009 0.0012 0.0201 0.0878
8 0.0006 0.0014 0.0022 0.0442 0.1774

16 0.0009 0.0013 0.0215 0.0847 0.3539
32 0.0015 0.0030 0.0434 0.1790 0.6909

64 0.0016 0.0206 0.0835 0.3405 1.3521
128 0.0023 0.0433 0.1710 0.6759 2.5744
256 0.0212 0.0854 0.3585 1.3467 4.9751

Table 2: PyTorch running times (seconds)

Figure 7: CPU util ization graphs for a) Python and b) PyTorch

A PyTorch Operations Based Approach for Computing Local Binary Patterns
Devrim Akgun

U.Porto Journal of Engineering, 7:4 (2021) 61-69 67

Table 1 shows example execution durations for Python implementation with standard

libraries. For small sizes of images and small sizes of batches, the running times measured are

considerably small. As the number of images or the image dimensions are increased, the

execution times are also increased significantly. In the case of PyTorch based implementation,

computation times are considerably reduced as shown by Table 2. When the CPU utilization

graphs are examined, PyTorch significantly increase the CPU utilization when compared with

the standard implementation as shown by Figure 7. The speedup results provided by PyTorch

over Python implementation with standard libraries are given by Figure 8. The acceleration is

mainly the result of compiled code and multicore CPU utilization. Differences among the

speedup results for different batch sizes and image sizes are mainly depends on the

management of threads, behavior of multicore CPU and the number of pixels operations.

Figure 8: PyTorch speed-up over Python implementation for a) 2828 image, b)

112112 image c) 448448 image

4. Discussions and Conclusions

The running times for Python scripts is usually longer than the compiled algorithms since it is

an interpreted language and executes the code interpreting it line by line. Comparison with

PyTorch implementation show that compiled operations provide significant accelerations

A PyTorch Operations Based Approach for Computing Local Binary Patterns
Devrim Akgun

U.Porto Journal of Engineering, 7:4 (2021) 61-69 68

together with multicore implementation. Script implementation usually utilizes one CPU core

and the increase in the computation times are approximately linear according to the number

of pixels operations which are determined by image dimensions and batch size. For example

the computation time for a 112112 image where batch size is set to 16 is about 4.04 second.

If the batch size is increased to 32 for the same image the computation time is increased to

about 8.17 seconds which is nearly 2 times higher than the results for the batch size of 16.

Similar behavior is not always observed in PyTorch results. For example the computation times

for a 112112 image are 0.0009 and 0.0014 for batch sizes 1 and 2 respectively. This can be

related to the small computation times, multicore computations and variations in CPU

frequency, and cache memory size. In general PyTorch library, reduces computation time to

practical levels and in the case of more CPU with more cores or GPU support the results will

improve especially for processing large sizes of data. Implemented, algorithm for LBP

computations can be utilized as a feature extraction layer in various machine learning and

deep learning algorithms for computer vision applications.

References

Alahmadi, A., M. Hussain, H. Aboalsamh, G. Muhammad, G. Bebis, and H. Mathkour. 2017.

"Passive detection of image forgery using DCT and local binary pattern". Signal, Image and
Video Processing 11, no. 1 (january): 81-88. https://doi.org/10.1007/s11760-016-0899-0.

Balandat, M., B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy. 2019.
"BOTORCH: Programmable Bayesian Optimization in PyTorch". Preprint, submitted

October 14, 2019. https://arxiv.org/abs/1910.06403v1.

Hassaballah, M., M. A. Kenk, and I. M. El-Henawy. 2020. "Local binary pattern-based on-road
vehicle detection in urban traffic scene". Pattern Analysis and Applications 23, no. 4
(november): 1505-21. https://doi.org/10.1007/s10044-020-00874-9.

Kim, D., G. Lee, M. Lee, S. U. Kang, and D. Kim. 2020. "Normalized convolutional neural
network". Preprint, submitted May 11, 2020. https://arxiv.org/abs/2005.05274v1.

Ojala, T., M. Pietikäinen, and T. Mäenpää. 2002. "Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns". IEEE Transactions on Pattern

Analysis and Machine Intelligence 24, no. 7 (july): 971-87.

https://doi.org/10.1109/tpami.2002.1017623.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, et al. 2019. "PyTorch:
An imperative style, high-performance deep learning library". In Advances in Neural

Information Processing Systems [33rd Annual Conference on Neural Information Processing
Systems, NeurIPS 2019], 8026-37.

Pereira, P. M. M., R. Fonseca-Pinto, R. P. Paiva, P. A. A. Assuncao, L. M. N. Tavora, L. A. Thomaz,

and S. M. M. Faria. 2020. "Dermoscopic skin lesion image segmentation based on Local

Binary Pattern Clustering: Comparative study". Biomedical Signal Processing and Control
59 (may): Article number 101924. https://doi.org/10.1016/j.bspc.2020.101924.

Pietikäinen, M. 2010. "Local binary patterns". In Scholarpedia. Vol. 5, no. 3.

https://doi.org/10.4249/scholarpedia.9775.

Pietikäinen, M., A. Hadid, G. Zhao, and T. Ahonen. 2011. "Computer Vision Using Local Binary
Patterns". In Computer Vision Using Local Binary Patterns. Computational Imaging and
Vision, vol. 40. London: Springer. https://doi.org/10.1007/978-0-85729-748-8_14.

https://doi.org/10.1007/s11760-016-0899-0
https://arxiv.org/abs/1910.06403v1
https://doi.org/10.1007/s10044-020-00874-9
https://arxiv.org/abs/2005.05274v1
https://doi.org/10.1109/tpami.2002.1017623
https://doi.org/10.4249/scholarpedia.9775

A PyTorch Operations Based Approach for Computing Local Binary Patterns
Devrim Akgun

U.Porto Journal of Engineering, 7:4 (2021) 61-69 69

Rahul, M., N. Kohli, and R. Agarwal. 2020. "Facial expression recognition using local binary
pattern and modified hidden Markov model". International Journal of Advanced
Intelligence Paradigms 17, no. 3/4. https://doi.org/10.1504/ijaip.2020.109523.

Tu, B., W. Kuang, G. Zhao, D. He, Z. Liao, and W. Ma. 2019. "Hyperspectral image classification
by combining local binary pattern and joint sparse representation". International Journal
of Remote Sensing 40, no. 24 (december): 9484-500.
https://doi.org/10.1080/01431161.2019.1633699.

Xi, M., L. Chen, D. Polajnar, and W. Tong. 2016. "Local binary pattern network: A deep learning
approach for face recognition". In 2016 IEEE International Conference on Image Processing
(ICIP) - Proceedings, 3224-28. IEEE. https://doi.org/10.1109/ICIP.2016.7532955.

Xu, X., and M. Pedersoli. 2019. "A computing Kernel for network binarization on PyTorch".

Preprint, submitted November 11, 2019. https://arxiv.org/abs/1911.04477.

Yang, W., and S. Krishnan. 2017. "Combining temporal features by local binary pattern for

acoustic scene classification". IEEE/ACM Transactions on Audio, Speech, and Language
Processing 25, no. 6 (june): 1315-21. https://doi.org/10.1109/taslp.2017.2690558.

https://doi.org/10.1504/ijaip.2020.109523
https://doi.org/10.1109/ICIP.2016.7532955
https://arxiv.org/abs/1911.04477
https://doi.org/10.1109/taslp.2017.2690558

