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Abstract 

Reliability assessment of electrical distribution systems is an important criterion to 
determine system performance in terms of i nterruptions. Probabilistic assessment 
methods are usually used in reliability analysis to deal with uncertainties. These 
techniques require a longer execution time in order to account for uncertainty. 

Multi-Level Monte Carlo (MLMC) is an advanced Monte Ca rlo Simulation (MCS) 
approach to improve accuracy and reduce the execution time. This paper provides a 
systematic approach to model the static and dynamic uncertainties of Time to Failure 

(TTF) and Time to Repair (TTR) of power distribution components using a Stochastic 
Diffusion Process. Further, the Stochastic Diffusion Process is integrated into MLMC 
to estimate the impacts of uncertainties on reliability indices. The Euler Maruyama 
path discretization applied to evaluate the solution of the Stochastic Diffusion 

Process. The proposed Stochastic Diffusion Process -based MLMC method is 
integrated into a systematic failure identification technique to evaluate the 
distribution system reliability. The proposed method is validated with analytical and 
Sequential MCS methods for IEEE Roy Bill inton Test Systems. Finally, the numerical 

results show the accuracy and fast convergence rates to handle uncertainties 
compared to Sequential MCS method. 

Author Keywords. Multi-Level Monte Carlo, Power Distribution System Reliability, 

Reliability Indices, Stochastic Diffusion Process, Euler Maruyama Discretization. 
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1. Introduction 

Power distribution system reliability can usually be evaluated through analytical or s imulation 

methods (Conti and Rizzo 2019; Brown 2008). Analytical methods can determine the average 
values of reliability indices, but they cannot handle uncertainties due to certain assumptions 

used in mathematical calculations. Meanwhile, simulation methods have the advantage of 
being able to handle uncertainties and are generally not restricted by the complexity of the 
power distribution network (IEEE Guide for Electric Power Distribution Reliability Indices 2004). 

There are two types of MCS methods: Non-sequential and Sequential MCS (Conti and Rizzo 

2015). Non-Sequential MCS, also known as Random MCS, is a commonly used approach in the 
literature to assess the reliability of generation, transmission, and distribution systems. 

Further, Variance Reduction Techniques (VRT) has enhanced the MCS method convergence 
rate (Billinton and Jonnavithula 1996). With VRT methods, the expected value of a stochastic 

variable can be estimated for a specified accuracy level, increasing the computation speed. 
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Other methods for improving MCS have been explored, including the dagger sampling 
technique (Sun et al. 2010), accelerated state evaluation approach (Shu et al. 2014), and 
discrete event simulation (Aldhubaib and Kashef 2020). Among a different type of VRTs 
applied to power system reliability analysis, the beneficial methods are Quasi-Monte Carlo 
(Hou, Wang, and Guo 2017), Importance Sampling (Urgun 2019), Control Variates (Wang et 

al. 2018), Stratified Sampling (Wang et al. 2011), and Antithetic Variables (Benidris and Mitra 
2014). A further meaningful way of variance reduction is by using Latin Hypercube Sampling 

(Jirutitijaroen and Singh 2008) and integrating these VRTs into MCS to enhance the process of 
estimating the reliability metrics. The MCS method’s computation efficiency has been 

improved in recent literature using MLMC approach (Huda 2018; Tindemans and Strbac 2020). 

Notable literature is available on the application of the MLMC method for distribution system 

reliability analysis. The MLMC method constructs the TTF and TTR using Stochastic Differential 
Equation (SDE) (Huda 2018). The SDE of a stochastic variable is usually driven by its drift and 

diffusion coefficients. The reliability assessment of a simple distribution system has been 
performed using the MLMC method (Huda and Živanović 2017a). The Milstein discretization 

method is applied to evaluate stochastic differential equations (Huda 2018), and reliability 
indices are evaluated. The impact of two different discretization methods, i.e., Milstein and 

Euler-Maruyama, are examined on convergence criteria of MLMC in reliability assessment 
(Huda and Živanović 2017b). 

Furthermore, the impact of different power system components availability on reliability 

performance is estimated through the MLMC method (Huda and Živanović 2019b). The effect 

of time-varying failure rates, repair times, and load models on reliability indices; Expected 
Energy Not Supplied (EENS) (Huda and Živanović 2019a) and Expected Interruption Cost 

(ECOST) (Huda and Živanović 2019c) are estimated through MLMC method. In addition, the 
impact of adverse weather events like wind and lightning on reliability indices are assessed 

through the MLMC method (Huda and Živanović 2019d). 

From the above literature on the MLMC method, it is observed that the diffusion and drift 
coefficients of stochastic differential equations are assumed as constants tuned with 

reference to the analytical techniques for a specific level of accuracy. However, the 
coefficients of SDE indicate the nature and characteristics of the stochastic process. The 

above-specific assumption is not valid when we want to model the different uncertainties like 

aleatory and epistemic uncertainties (Teh 2018; Abunima and Teh 2020) associated with the 
failure rates and repair rates of power system elements. This paper proposes a new model 
that improves the MLMC method further to develop drift and diffusion coefficient expressions 
considering the various uncertainties associated with TTF and TTR. 

The key contributions of the paper are listed below: 

a) Derivation of drift and diffusion coefficients of stochastic differential equations for the 

corresponding probability distribution function of stochastic variables (TTF and TTR) 

using the Stochastic Diffusion Process and Fokker-Planck equation. 

b) Integration of Multi-Level Monte Carlo simulation into a generalized approach for a 

computationally efficient and accurate evaluation of system reliability indices. 

c) Modeling of the stochastic variables (TTF and TTR) in two periods of the bathtub curve 
using the proposed method and case studies are performed on IEEE RBTS test systems. 

d)  The efficiency of the improved method in handling various uncertainties over the other 
techniques are confirmed with the results. 
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This paper is organized as follows. Section 2 presents the overview of MLMC simulation, 
Stochastic Diffusion Process, and generalized systematic procedure to evaluate the effect of 
branch failures on load points. Section 3 presents the proposed algorithm of Stochastic 
Diffusion Process-based MLMC for predictive reliability assessment. Section 4 presents the 
comparison of results between analytical, Sequential MCS (SMCS), and proposed method for 

IEEE RBTS test systems. Section 5 presents the conclusions and future scope of the research 
work. 

2. Overview of MLMC and Stochastic Diffusion Process 

2.1. MLMC Theory 

The outcome of the MLMC method is to estimate the expected value of a random variable 
(reliability index) denoted by E[R]. In this section, the coming formulation follows the 
approach presented in Giles (2015). Let E[Ra] be an approximate function of E[R], where R is 
the reliability index to be estimated and Ra is a random variable that approximates R. The 
unbiased estimator of E[Ra] in the SMCS method is given by Giles (2015): 

𝐸𝑀�̂� [𝑅𝑎 ]  =   
1

𝑁𝑠

∑ 𝑅𝑎

(𝑖)

𝑁𝑠

𝑖 =1

 (1) 

where 𝑅𝑎
(𝑖)is the ith sample of Ra and Ns is the samples on a fine level. The Root Mean Square 

Error (RMSE) is equal to 1/√𝑁𝑠 and the variance is equal to 𝑁𝑠
−1V[Ra]. 

Mathematically, the concept of MLMC for different levels can be expressed by Equation (2) 

shown as follows (Giles 2015): 

𝐸[𝑅𝑎
] =  𝐸[𝑅0

] + ∑ 𝐸[𝑅𝑙 − 𝑅𝑙−1
]

𝐿

𝑙=1

 (2) 

Hence the outcome of the MLMC method for each performance index of the power 
distribution system is specified by Equation (3) (Giles 2015): 

𝐸𝑀�̂� [𝑅𝑎 ]  = ∑
1

𝑁𝑙

∑[𝑅𝑙

(𝑖)
− 𝑅𝑙−1

(𝑖)
]

𝑁𝑙

𝑖 =1

𝐿

𝑙 =0

 (3) 

Usually, the estimator for E[𝑅𝑙 − 𝑅𝑙−1] is evaluated as specified in the form of E[𝑅𝑙
𝑓 −  𝑅𝑙−1

𝑐 ]. 

The fine and coarse level timestep sizes are expressed as shown in Equation (4) (Giles 2015): 

ℎ𝑐  = 2−(𝑙−1)
𝑇 and ℎ𝑓  =  2−𝑙𝑇 (4) 

where ℎ𝑓  is the fine level timestep size and ℎ𝑐  is coarse level timestep size. 

The simulation convergence criteria in the MLMC method depends on the target Root Mean 
Square Error (RMSE) value specified by Equation (5) (Giles 2015) is: 

𝜀2  =  ∑ 𝑁𝑙
−1𝑉𝑙

𝐿

𝑙=0

 + [𝐸(𝑅𝑎 − 𝑅  
)]2 

 
(5) 

To meet the convergence of MSE ≤ 𝜀2, it is needed to guarantee that both the variance and 

square root errors are distinctly less than 𝜀2/2. The ideal number of samples 𝑁𝑙
  is evaluated 

using Equation (6) (Giles 2015): 

𝑁𝑙  =  2𝜀−2√
𝑉𝑙

𝐶𝑙

 (∑ √𝑉𝑙 𝐶𝑙)

𝐿

𝑙=0

 (6) 

where 𝐶𝑙  is the sample cost of level l. In the case of weak convergence error, the convergence 

criteria are specified as: 
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𝐸[𝑅𝑙 − 𝑅𝑙−1
]/ (2𝛼 − 1)  <  

𝜀  

√2
 (7) 

2.2. Stochastic diffusion process 

In this section, the coming formulation follows the approach presented in Zárate‐Miñano and 
Milano (2016). The stochastic differential equation usually defines the Stochastic Diffusion 

Process (SDP). A general form of single-dimensional SDE is as shown in Equation (8) (Zárate‐
Miñano and Milano 2016): 

𝑑𝑋 = 𝑎(𝑋 , 𝑡) ∗ 𝑑𝑡 + 𝑏(𝑋, 𝑡) ∗ 𝑑𝑊(𝑡), 𝑡 € [0, 𝑇] (8) 

where 𝑋 is the stochastic process (TTF and TTR) and 𝑊(𝑡) is a Weiner process, also known as 
Brownian motion. The numerical solution of Equation (8) is known as a stochastic diffusion 
process, and the terms 𝑎(𝑋, 𝑡) and 𝑏(𝑋, 𝑡)  are called drift and diffusion coefficients of the SDE. 

The Fokker-Planck equation generally describes the time-dependent expansion of the 

probability distribution function of a stochastic process. For the stochastic process 𝑋 defined 
by the SDE shown in Equation (8), the corresponding Fokker-Planck equation is shown in 

Equation (9) (Zárate‐Miñano and Milano 2016): 

𝜕𝑝(𝑋 , 𝑡)

𝜕𝑡
=  −

𝜕

𝜕𝑋
 [𝑎(𝑋 , 𝑡) ∗  𝑝(𝑋, 𝑡)] + 

1

2
 

𝜕2

𝜕𝑋2
 [𝑏2(𝑋 , 𝑡) ∗   𝑝(𝑋, 𝑡)] (9) 

where 𝑝(𝑋, 𝑡)  is the transient probability distribution function of the stochastic process 𝑋. In 
general, the failure rates of the power system components are expressed by a two-state 
Markov model. Hence the Fokker-Planck Equation for a Markov process is given by: 

0 =  −
𝜕

𝜕𝑋
 [𝑎(𝑋, 𝑡) ∗  𝑝(𝑋 , 𝑡)] + 

1

2
 

𝜕2

𝜕𝑋2
 [𝑏2(𝑋 , 𝑡) ∗   𝑝(𝑋, 𝑡)] (10) 

Therefore, if any of the coefficients 𝑎(𝑋, 𝑡) or 𝑏(𝑋, 𝑡) of a stochastic process is known, the 

other coefficient can be derived using Equation (10) for a specified probability distribution 
function 𝑝(𝑋, 𝑡) . 

2.3. MLMC method for Distribution System Reliability 

In this section, the coming formulation follows the approach presented in Huda and Živanović 
(2019a). In the distribution system reliability evaluation, a two-state Markov model of a power 
system component is used. The two states are represented as up state and down state. The 

average duration during which a component is in the up state is called TTF, and the average 
duration during which a component is in the down state is called TTR, respectively (Huda and 
Živanović 2019a). 

𝑇𝑇𝐹 =
1

𝜆 𝑘

 (11) 

𝑇𝑇𝑅 =
1

µ𝑘

 (12) 

where 𝜆𝑘 represents failure rate of kth branch 

µ𝑘  represents repair rate of kth branch 

In conventional SMCS, the up time (Tup) and down time (Tdn) of a component k are usually 
sampled using failure and repair rates of components using Equation (13) and Equation (14) 
(Huda and Živanović 2019a) is: 

𝑇𝑢𝑝𝑘
 =  − 𝑇𝑇𝐹 ∗  𝑙𝑛 (𝑈1) (13) 

𝑇𝑑𝑛𝑘
=  − 𝑇𝑇𝑅 ∗  𝑙𝑛 (𝑈2) (14) 
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where U1 and U2 are uniform random numbers sampled using uniform probability 
distribution between [0, 1]. In conventional MLMC method, the up time (Tup) and down time 
(Tdn) of a component k are usually sampled using failure and repair rates of components using 
Equation (15) (Huda 2018) is: 

𝑇𝑢𝑝𝑘
 = −𝑋𝑡 +1  ∗  𝑙𝑛 (𝑈1) (15) 

where 𝑋𝜆𝑘  is evaluated using SDP represented by Equation (8) as shown below (Huda 2018): 

𝑋𝑡 +1 = 𝑋𝑡 +  𝜇 ∗ 𝑑𝑡 + 𝜎 ∗ 𝑑𝑊(𝑡)  (16) 

where 𝜇 and 𝜎 are the drift and diffusion coefficients assumed as constants (Huda 2018) for 

modeling of TTF and TTR tuned with reference to the analytical method for a specific level of 
accuracy. However, the coefficients of SDP indicate the nature and characteristics of the 

stochastic process. The above-specific assumption is not valid when we want to model the 
different uncertainties associated with the failure rates and repair rates of power system 

elements. As the main contribution, this paper develops the expressions for drift and diffusion 
coefficients considering the various uncertainties. 

2.4. Methodical approach for cases identification 

A generalized methodical approach (Conti, Nicolosi, and Rizzo 2012) is integrated into the 
MLMC method to evaluate the impact of branch failures on load point indices. The effect of 

branch failure on customers is categorized into different failure cases depending on load point 
location, failure branch location, protection device type, and installation location. 

Table 1 presents the mathematical equations to evaluate the load point indices for different 
failure cases (Conti, Nicolosi, and Rizzo 2012): 

Case Load Reliability Indices 

1 
𝜆 𝑖,𝑘 =  𝑓𝑘  

𝑈𝑖 ,𝑘 =  𝑓𝑘 ∗ 𝑡𝑅,𝑘  

2 
𝜆 𝑖,𝑘 = 0 
𝑈𝑖 ,𝑘 = 0 

3 
𝜆 𝑖,𝑘 =  𝑓𝑘  

𝑈𝑖 ,𝑘 =  𝑓𝑘 ∗ 𝑡𝑅,𝑘  

3.1 
𝜆 𝑖,𝑘 =  𝑓𝑘  

𝑈𝑖 ,𝑘 =  𝑓𝑘 ∗ 𝑡𝑅,𝑘  

3.2 
𝜆 𝑖,𝑘 =  𝑓𝑘  

𝑈𝑖 ,𝑘 =  𝑓𝑘 ∗ 𝑡𝑆,𝑠𝑐  

4 
𝜆 𝑖,𝑘 =  𝑓𝑘  

𝑈𝑖 ,𝑘 =  𝑓𝑘 ∗ 𝑡𝑆,𝑗 

5 
𝜆 𝑖,𝑘 =  𝑓𝑘  

𝑈𝑖 ,𝑘 =  𝑓𝑘 ∗ 𝑡𝑅,𝑘  

Table 1: Equations for Load Reliability Indices  

𝜆 𝑖,𝑘 = Outage frequency of LP-i due to kth branch, 𝑈𝑖 ,𝑘 = Outage duration of LP-i due to kth branch, 𝑓𝑘  = Failure 
rate of kth branch, 𝑡𝑅,𝑘  = Repair time of kth branch and 𝑡𝑆,𝑗 = Switching time of jth branch 

2.5. Distribution system reliability indices 

The reliability performance of an electrical distribution system is examined thanks to two 
important metrics that are the System Average Interruption Frequency Index (SAIFI), and 
System Average Interruption Duration Index (SAIDI) (IEEE Guide for Electric Power Distribution 

Reliability Indices 2004). These indices are calculated from the average load point outage 

frequency (𝜆𝑖) and outage duration (𝑈𝑖) of the distribution system and are expressed as 
follows: 
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𝑆𝐴𝐼𝐹𝐼 =
∑ 𝑁𝐶,𝑖 ∗  𝜆 𝑖

𝑛𝐿𝑃
𝑖=1

∑ 𝑁𝐶,𝑖
𝑛𝐿𝑃

𝑖=1

 (17) 

𝑆𝐴𝐼𝐷𝐼 =
∑ 𝑁𝐶,𝑖 ∗  𝑈𝑖

𝑛𝐿𝑃
𝑖=1

∑ 𝑁𝐶,𝑖
𝑛𝐿𝑃

𝑖=1

 (18) 

𝜆 𝑖  = ∑ 𝜆 𝑖,𝑘

𝑁𝐵  

𝑘=1

  

𝑈𝑖  = ∑ 𝑈𝑖 ,𝑘

𝑁𝐵  

𝑘=1

  

where 𝑛𝐿𝑃  represents the number of load points (LPs), 𝑁𝐶,𝑖  represents the number of 

customers at LP-i, 𝜆𝑖 represents the LP-i outage frequency and 𝑈𝑖  represents the LP-i outage 
duration. 

3. Stochastic Diffusion Process Based MLMC Method 

In the MLMC method, the stochastic uncertainty of TTF of component k is modeled using an 

exponential distribution. The Weiner process drives SDE, Wt on the time interval [0, T]. Then, 
the SDE based TTF model with specified values of drift and diffusion coefficients and an initial 

TTF [𝑋0 = 1 𝜆𝐾⁄ ] is expressed using Equation (19): 

𝑑𝑋𝜆𝑘 (𝑡) =  𝑎(𝑋𝜆𝑘 (𝑡) , 𝑡) ∗  𝑑𝑡 +  𝑏(𝑋𝜆𝑘 (𝑡) , 𝑡) ∗  𝑑𝑊𝑡  (19) 

where 𝑋𝜆𝑘 (𝑡) is the TTF value at time t. 

The numerical solution of SDE-based TTF model in Equation (19) is determined by applying 

Euler Maruyama discretization, as shown in Equation (20) below: 

𝑋𝜆𝑘 (𝑚+1) =  𝑋𝜆𝑘 (𝑚)  +  𝑎(𝑋𝜆𝑘 (𝑚) , 𝑡𝑚) ∗  ℎ + 𝑏(𝑋𝜆𝑘 (𝑡𝑚) , 𝑡𝑚) ∗ 𝑑𝑊𝑡  (20) 

Then, the SDE based models of TTF and TTR are represented using Equation (21) and Equation 

(22), as shown below: 

𝑇𝑢𝑝𝑘
=  − 𝑋𝜆𝑘 (𝑚+1) ∗  𝑙𝑛 (𝑈1) (21) 

𝑇𝑑𝑛𝑘
=  − 𝑋µ𝑘 (𝑚+1) ∗  𝑙𝑛 (𝑈2) (22) 

As part of the main objective of this paper, the drift and diffusion coefficients of stochastic 
variables representing TTF and TTR are derived using the Stochastic Diffusion Process  and 
Fokker-Planck Equation explained as follows. 

3.1. Estimation of drift and diffusion coefficients of TTF using stochastic weibull diffusion 
process 

The failure rates of components are usually represented by the Weibull distribution function 
in three periods of the bathtub curve, i.e., the infant mortality period, the useful life period, 

and the aging period. The probability distribution function of Weibull distribution is given by 
Equation (23) (Huda 2018) is: 

𝑓(𝑡;  𝛼, 𝛽) =  
𝛽

𝛼  
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽

) (23) 

where 𝛼 is the scale parameter and 𝛽 is the shape parameter. The shape parameter 𝛽 for 

three periods of the bathtub curve is: 
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𝛽 < 1, 𝑓𝑜𝑟 𝐼𝑛𝑓𝑎𝑛𝑡  𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦  𝑃𝑒𝑟𝑖𝑜𝑑
𝛽 = 1, 𝑓𝑜𝑟 𝑈𝑠𝑒𝑓𝑢𝑙 𝐿𝑖𝑓𝑒  𝑝𝑒𝑟𝑖𝑜𝑑

𝛽 > 1, 𝑓𝑜𝑟 𝐴𝑔𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑
 

The Stochastic Diffusion Process can be generated in different ways by considering the 
probability distribution function of a random variable. A Stochastic Diffusion Process 

representing the Weibull distribution has been developed to model the uncertainty of a 
random variable. The drift coefficient is considered as proportional to the probability 
distribution function of Weibull distribution (Nafidi et al. 2019). Therefore, the drift coefficient 
representing the random variable, TTF is expressed as Equation (24) shown below: 

𝑎(𝑋 , 𝑡)  = [
𝛽

𝛼  
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽

)] ∗ 𝑋 (24) 

The expression for the diffusion coefficient 𝑏(𝑋, 𝑡)  is determined by substituting Equation (24) 

into Equation (10) for Weibull distribution. Equation (25) represents the derived expression 
for the diffusion coefficient 𝑏(𝑋, 𝑡) : 

𝑏(𝑋 , 𝑡) = √[
𝛽

𝛼  
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽

)] ∗ 𝑋  (25) 

Hence, the Stochastic Weibull Diffusion Process (SWDP) for TTF modeling is expressed by 

Equation (26) is: 

𝑑𝑋 = {[
𝛽

𝛼  
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽

)] ∗  𝑋} ∗ 𝑑𝑡 + {√[
𝛽

𝛼 
∗ (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽

)] ∗ 𝑋}

∗ 𝑑𝑊(𝑡)  

(26) 

The numerical solution of Equation (26) is determined using an Euler Maruyama discretization 
scheme represented by Equation (20) is: 

𝑋𝜆𝑘 (𝑚+1)  =  𝑋𝜆𝑘 (𝑚) ∗  [1 + {[
𝛽

𝛼  
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽
)]} ∗  ℎ +

{√[
𝛽

𝛼  
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽
)] } ∗ 𝑑𝑊𝑡 ] 

(27) 

Thus, the expression to sample TTF in the proposed method is determined by substituting 

Equation (27) into Equation (21) and is given by Equation (28): 

𝑇𝑢𝑝𝑘
=  − 𝑋𝜆𝑘 (𝑚) ∗  [1 +   {[

𝛽

𝛼 
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽

)]} ∗  ℎ 

+ {√[
𝛽

𝛼 
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽

)] } ∗ 𝑑𝑊𝑡] × 𝑙𝑛 (𝑈1) 

(28) 

3.2. Estimation of drift and diffusion coefficients of TTR using stochastic exponential 
diffusion process 

The Exponential distribution function is usually used to represent the failure rates of 

components in the useful life period of the bathtub curve and repair times of the power 
system components. The probability density function of Exponential distribution is given by 

Equation (29) (Zárate‐Miñano and Milano 2016) is: 

𝑓(𝑡) =   𝜆 ∗  𝑒−𝜆𝑡  (29) 
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The drift coefficient is considered proportional to the probability distribution function of 
Exponential distribution. Therefore, the drift coefficient representing the random variable TTR 
is expressed as Equation (30): 

𝑎(𝑋, 𝑡)  = (𝜆 ∗  𝑒−𝜆𝑡) ∗  𝑋 (30) 

The expression for the diffusion coefficient 𝑏(𝑋, 𝑡)  is determined by substituting Equation (30) 
into Equation (10) for exponential distribution. Equation (31) represents the derived 
expression for the diffusion coefficient 𝑏(𝑋, 𝑡): 

𝑏(𝑋 , 𝑡) = √(𝜆 ∗ 𝑒−𝜆𝑡) ∗  𝑋 (31) 

Hence, the Stochastic Exponential Diffusion Process (SEDP) for TTR modeling is given by: 

𝑑𝑋 = {(𝜆 ∗  𝑒 −𝜆𝑡) ∗  𝑋} ∗ 𝑑𝑡 + {√(𝜆 ∗  𝑒 −𝜆𝑡) ∗ 𝑋} ∗ 𝑑𝑊(𝑡) (32) 

The numerical solution of Equation (32) is determined using an Euler Maruyama discretization 

scheme represented by Equation (20) is: 

𝑋µ𝑘 (𝑚+1)  =  𝑋µ𝑘 (𝑚) ∗  [1 +   {(𝜆 ∗  𝑒 −𝜆𝑡)} ∗  ℎ + {√(𝜆 ∗  𝑒 −𝜆𝑡)} ∗ 𝑑𝑊𝑡 ] (33) 

Thus, the expression to sample TTR in MLMC is determined by substituting Equation (33) into 
Equation (22) and is given by Equation (34): 

𝑇𝑑𝑛𝑘
=  − 𝑋µ𝑘 (𝑚) ∗  [1 +  {(𝜆 ∗  𝑒−𝜆𝑡)} ∗  ℎ +  {√(𝜆 ∗  𝑒−𝜆𝑡)} ∗ 𝑑𝑊𝑡] × 𝑙𝑛 (𝑈2) (34) 

3.3. Integrated stochastic diffusion process based MLMC and generalized methodical 
approach 

The algorithm and flowchart of the integrated SDP based MLMC (SDP_MLMC) and generalized 
methodical approach for predictive reliability assessment is summarized in this section: 

3.3.1. Algorithm: 

1. Initialization of the component reliability data, network data and MLMC simulation 
parameters: 

Number of samples (N) 

Maximum levels (Lm) 

Desired accuracy (ε) and 

Initial samples (Ns) 

2. If L ≤ Lm, then set l = 0 and go to step (3) or else set Lm = Lm + 1 and repeat step (2). 

3. If l ≤ L, then set n = 1, N = Ns and go to step (4) or else go to step (10). 

4. If n < N, then set k = 1 and go to step (5) or else go to step (9). 

5. If k ≤ NB, then set Tt = 0 and go to step (6) or else calculate 𝜆𝑖, 𝑈𝑖  and reliability index and 
set n = n + 1 and go to step (4). 

6. If Tt < T, then go to step (7) or else set k = k + 1 and go to step (5). 

7. Set i = 1 and for branch k, evaluate TTF using SWDP given by Equation (28) and TTR using 
SEDP given by Equation (34): 

𝑇𝑇𝐹𝑘 =  − 𝑋𝜆𝑘 (𝑚) ∗  [1 +   {[
𝛽

𝛼  
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽
)]} ∗  ℎ + {√[

𝛽

𝛼  
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽
)] } ∗

𝑑𝑊𝑡 ] × 𝑙𝑛 (𝑈1)  

𝑇𝑇𝑅𝑘 =  − 𝑋µ𝑘 (𝑚) ∗  [1 + {(𝜆 ∗  𝑒 −𝜆𝑡)} ∗  ℎ + {√(𝜆 ∗  𝑒 −𝜆𝑡)} ∗ 𝑑𝑊𝑡 ] × 𝑙𝑛 (𝑈2) 
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8. If i ≤ NLP, then determine the failure cases from Table 1 and evaluate 𝜆𝑖,𝑘 , 𝑈𝑖,𝑘  and set i = i 
+ 1 and repeat step (8). Else update Tt = Tt + TTFk + TTRk and go to step (6). 

9. If RMSE ≤ 𝜀
√2⁄ , then set l = l + 1 and go to step (3) or else set N = Nopt calculated using (6) 

and go to step (4). 

10. If WE ≤ 𝜀
√2⁄ , then stop the algorithm or else L = L + 1 and go to step (2). 

1) Flowchart 

The flowchart of the integrated SDP based MLMC and generalized methodical approach is 
presented in Figure 1. 

 
Figure 1: Flowchart of SDP Based MLMC Method 

4. Case Studies and Results 

The SDP based MLMC method is validated using three distribution test systems (Wang 1995): 

IEEE RBTS Bus-2, IEEE RBTS Bus-5, and IEEE RBTS Bus-6. The proposed SDP_MLMC method is 
implemented in Visual C++, and description of the test systems along with numerical results 
are discussed in this section: 

4.1. Test systems 

A complex 11 kV IEEE RBTS Bus-2 (Wang 1995) distribution system is considered to validate 

the proposed method, as shown in Figure 2. 
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The test system consists of 4 main feeders, 56 nodes, 36 sections, 20 transformers, and 22 
load points. The reliability data, line lengths, average load data, and consumers’ data are in 
(Wang 1995). Figure 3 presents the IEEE RBTS Bus-5 (Wang 1995) urban distribution system. 
The test system consists of 4 feeders, 69 nodes, 43 lines, 26 transformers, and 26 load points.  
Figure 4 presents the IEEE RBTS Bus-6 (Wang 1995) rural distribution system. The test system 

consists of 4 feeders, 102 nodes, 64 lines, 38 transformers, and 40 load points. 

 
Figure 2: IEEE RBTS Bus-2 Distribution Test System (Wang 1995) 

 
Figure 3: IEEE RBTS Bus-5 Distribution Test System (Wang 1995) 

4.2. Results and discussions 

This section discusses the proposed method applied for two scenarios, i.e., useful life and 

aging periods of failure rate model. The target RMSE values (ε) of 0.01% and 0.1% are 
considered as stopping criteria for estimation of SAIFI and SAIDI respectively. 

Table 2 presents the SAIFI values evaluated using analytical, SMCS, MLMC, and SDP_MLMC 

methods for the useful life period. The objective of the comparison in Table 2 is to assess the 
performance of the proposed method. As it is observed from the structure of the methods  
proposed, the SAIFI values evaluated with the analytical method does not consider the 
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uncertainties whereas the SMCS method only considers randomness and constant failure 
rates and repair times for sampling TTF and TTR using exponential distribution. The 
conventional MLMC method modeled the TTF and TTR using SDEs with constant drift and 
diffusion coefficients tuned with reference to the analytical method for all three test systems. 
In general, the drift and diffusion coefficients represent the nature of a stochastic process and 

considering them constant does not take into account the uncertainty of failure rates and 
repair times. This limitation has been addressed with proposed SDP_MLMC method. The 

proposed method models the continuous and discrete uncertainties affecting the failure rates 
and repair times effectively. This method samples TTF and TTR using exponential probability 

distribution, SDP and Fokker-Planck equation, and calculates the drift and diffusion 
coefficients. The results of the proposed method are validated with the published results of 

analytical, SMCS and MLMC methods for the three test systems. It is concluded that the SAIFI 
values evaluated with the proposed SDP_MLMC method and outcomes are near to the 

published methods. 

 
Figure 4: IEEE RBTS Bus-6 Distribution Test System (Wang 1995) 

 

SAIFI 
 M-I M-II Error b/w 

M-I & 
M-II 
(%) 

M-III Error b/w 

M-I & 
M-III 
(%) 

M-IV Error b/w 

M-I & 
M-IV 
(%) 

 Analytical [25] SMCS [4] 
MLMC 

[15] 
SDP_ 

MLMC 

B2 0.24821 0.2493 -0.44 0.25029 -0.84 0.25085 -1.06 

B5 0.23248 0.2347 -0.95 0.2400 -3.23 0.23478 -0.99 

B6 1.00665 1.016 -0.93 1.0031 0.35 1.02685 -2.01 

Table 2: SAIFI values for Useful Life Period 

Similarly, Table 3 presents the SAIDI values calculated using analytical, SMCS, MLMC, and 
SDP_MLMC methods for the useful life period for the three test systems. 
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SAIDI 

 M-I M-II Error b/w 
M-I & 

M-II 
(%) 

M-III Error b/w 
M-I & 

M-III 
(%) 

M-IV Error b/w 
M-I & 

M-IV 
(%) 

 
Analytical [25] SMCS [4] 

MLMC 
[15] 

SDP_ 
MLMC 

B2 3.61258 3.6247 -0.34 3.6505 -1.05 3.564 1.34 

B5 3.67328 3.7048 -0.86 3.60220 1.94 3.6041 1.88 

B6 6.66878 6.7324 -0.95 6.76500 -1.44 6.7528 -1.26 

Table 3: SAIDI values for Useful Life Period 

 SAIFI SAIDI 

 SMCS [4] 
SDP_ 

MLMC 
Error (%) SMCS [4] 

SDP_ 

MLMC 
Error (%) 

B2 0.32019 0.30578 3.94 4.4538 4.5107 -1.28 
B5 0.28682 0.28391 1.01 4.4481 4.3042 3.24 

B6 1.11699 1.0839 2.96 7.4566 7.3051 2.03 

Table 4: SAIFI and SAIDI Comparison for Aging Period 

Table 4 presents the comparison of SAIFI and SAIDI values calculated using SMCS and 
SDP_MLMC methods for the aging period for the three test systems. It is evident that in the 
aging period, the failure rates are increased exponentially and are modeled with Weibul l 
distribution in SMCS method. Since the MLMC method is considering constant drift and 
diffusion terms and hence, it is limited to the useful life period only and not applicable for 
aging period. However, the advantage of the MLMC method is that it results  in the 
improvement of execution time (Huda 2018) due to reduction in number of simulations for 

convergence compared to SMCS method. The proposed SDP_MLMC holds good for both aging 
period and useful life period as drift and diffusion coefficients are derived by representing TTF 

as Weibull distribution and exponential distribution for TTR. With respect to the computation 
performance of the proposed SDP_MLMC method, the number of simulations for 

convergence of SAIFI value is 18152, 111049, and 135850 for B2, B5, and B6 respectively for 
SDP_MLMC approach compared to 106 simulations for the SMCS method in the aging period. 

The main advantage of the proposed SDP_MLMC method is that it holds good for handling 
aging period same as SMCS method and the faster convergence rate as of MLMC method. 
From Table 4, it is concluded that the SAIFI and SAIDI values estimated for aging period with 

the proposed SDP_MLMC method are comparable with SMCS with less number of iterations 
and provides the solution where conventional MLMC fails. 

 
Figure 5: SAIFI Comparison for Useful Life Period 
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Figure 6: SAIDI Comparison for Useful Life Period 

 
Figure 7: SAIFI Comparison for Aging Period 

Figure 5 and Figure 6 illustrate the comparison of SAIFI and SAIDI values in a useful life period 
for three test systems, respectively. Figure 7 and Figure 8 illustrate the comparison of SAIFI 

and SAIDI values in the aging period for three test systems, respectively. 

 
Figure 8: SAIDI Comparison for Aging Period 
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From the analysis, it is concluded that the proposed method after including the uncertainty of 
TTF and TTR results in the indices values that are in acceptable accuracy levels with faster 
convergence rates. Further, it is observed that for two different scenarios, there is an increase 
in the value of SAIFI and SAIDI in the aging period compared to the useful life period. Results 
demonstrate the effectiveness of the proposed method to handle uncertainty in all periods of 

the bathtub curve compared to the MLMC method, which is limited to the useful life period. 

5. Conclusions and Future Scope 

This research illustrates the Stochastic Diffusion Process application for modeling 
uncertainties of TTF and TTR in the MLMC method for predictive reliability assessment. The 

SDP coefficients representing the stochastic variables TTF and TTR of power system elements 
are determined using SWDP and SEDP. The SDP-based MLMC method has been integrated 

into a generalized failure detection procedure to estimate the effect of branch failures on load 
points. The efficacy of the proposed method in terms of handling uncertainty and computation 

speed is validated by IEEE RBTS Bus-2, Bus-5, and Bus-6 test systems. Two different case 
studies have been performed to investigate the TTF and TTR modeling in useful life and aging 

periods of components. 

Numerical results demonstrate that the proposed method can model any uncertainty 
associated with TTF and TTR. The conventional MLMC method limitation of considering the 

constant drift and diffusion terms with reference to analytical method is overcome with the 
proposed SDP_MLMC approach. Also, the proposed method is within acceptable levels of 

accuracy with the improved convergence rate. Further, the proposed SDP_MLMC method is 
better suited to model various uncertainties associated with the DERs and perform the 
reliability analysis more effectively with faster execution times. 

As part of the future scope, the Stochastic Diffusion Process can be used to incorporate 

discrete random events and model the various uncertainties of Distributed Energy Resources 
(DER) in reliability assessment with less computational burden. 
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