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Abstract 
This paper presents the modeling of adverse weather events and their impact on the 
integrated reliability and power quality assessment of power distribution systems. 
With respect to previous works, stochastic modeling of adverse weather events is 
integrated into the Monte Carlo Simulation approach and its impacts on reliability 
and voltage sag indices are highlighted. In this paper, the aleatory and epistemic 
uncertainty are modeled into sampling of Time to Failure (TTF) using the Stochastic 
Diffusion Process. The Stochastic Diffusion Process, including the Jump diffusion is 
used to model the impact of adverse weather events on permanent and temporary 
failure rates. The proposed method is applied to the modified IEEE 34 node test 
feeder, and three case studies have been performed to investigate the impact of 
various uncertainties and adverse weather events. Numerical results for the IEEE 34 
node test feeder are presented to quantify adverse weather impacts on both 
reliability and voltage sag indices. 
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1. Introduction 

Power distribution system reliability and power quality studies are critical for consumers to 
ensure supply continuity and quality (Short 2005). With the increased penetration of 
Distributed Energy Resources (DERs), power distribution systems are subject to a variety of 
uncertainties, necessitating the development of more efficient methods for modeling the 
uncertainty. There are two types of uncertainty: aleatory uncertainty and epistemic 
uncertainty (Awadallah and Milanović 2013). Aleatory uncertainty is associated with 
randomness, whereas epistemic uncertainty is associated with a lack of data or model 
simplifications. To model aleatory uncertainty with probability distribution functions, Monte 
Carlo Simulation (MCS) methods are commonly used. 

In general, distribution system reliability is assessed using MCS methods that account for 
aleatory uncertainty (Conti and Rizzo 2019). Similarly, as reported in Baptista, Rodrigues, and 
da Silva (2016), MCS methods are used to assess voltage sag in distribution systems. However, 
so far, distribution system reliability and power quality assessments have been performed 
independently. Furthermore, there is a growing interest in integrated reliability and power 
quality studies during the planning phase. In this context, very little literature is available on 
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integrated reliability and power quality analysis of power distribution systems as reported 
below. 

It is evident that the primary cause of the occurrence of voltage sag events is short circuit 
faults, and the faults are characterized by type, location, resistance, and phases. Apart from 
short circuit faults, the other causes of voltage sag are transformer energisation, motor 
starting, adverse weather events etc. The impact of adverse weather events on distribution 
system reliability assessment is well studied in Huda, Nazmul, and Živanović (2019), where 
failure rates take into account the scaling factors of adverse weather conditions. In addition, 
the effect of high wind conditions on reliability indices has been investigated (Costa, Venturini, 
and da Rosa 2019). The above-mentioned models, however, do not account for the epistemic 
uncertainty associated with the adverse weather conditions. 

In Leal (2014), short circuit analysis has been integrated into the MCS method to evaluate the 
reliability and power quality indices without and with Distributed Generation (DG). The 
integrated reliability and power quality algorithm has been validated by the IEEE 34 node test 
feeder and the results demonstrate the importance of conisdering voltage sags from a 
reliability perspective. Then, the impact of network geometric model characterized by 
different overhead geometric configurations has been studied on integrated reliability and 
power quality assessment of distribution systems in da Rosa et al. (2016). Furthermore, the 
impact of different protection schemes and network geometric models on reliability and 
power quality indices has been investigated for different alternatives (Bolacell, Venturini, and 
da Rosa 2018). It is observed that the protection schemes and geometric models have a 
considerable impact on the reliability and voltage sag performance of the distribution systems. 

Gautam, Piya, and Karki (2020) developed an aggregated reliability and power quality model 
that employs a graph theory approach to identify protection system operations and DERs. The 
findings demonstrate the effect of DERs on the reliability and voltage sag indices. Recently, 
the impact of loadability and economic factors, on the assessment of integrated reliability and 
power quality has been investigated (Bolacell et al. 2020a). The findings demonstrate the 
selection of alternative protection schemes while taking thermal limits, voltage degradation, 
and economic considerations into account. In addition, three short circuit indices are 
developed as part of an integrated distribution system reliability and power quality 
assessment (Bolacell et al. 2020b). These indices aid in determining the protection system 
settings during the planning phase, and the effect of network geometry on these indices is 
also investigated. 

It is clear from the literature on integrated reliability and power quality assessment of 
distribution systems that only aleatory uncertainty has been addressed in terms of reliability 
and power quality performance. To the best of our knowledge, the preceding literature has 
not taken into account the modeling of epistemic uncertainty into TTF sampling in MCS 
methods. Furthermore, the modeling of adverse weather events while accounting for aleatory 
and epistemic uncertainty has yet to be addressed. This paper proposes a modified Integrated 
Reliability and Power Quality Assessment (IRPQ) approach for modeling aleatory and 
epistemic uncertainty with more accuracy. 

The main contributions of the paper are: 

Evaluation of the impact of aleatory and epistemic uncertainty modeling on integrated 
reliability and power quality assessment of distribution systems. 

Modeling of Adverse Weather Events including aleatory and epistemic uncertainties using the 
Stochastic Jump Diffusion Process based MCS. 
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Three case studies are performed on the modified IEEE 34 node test system to quantify the 
impact of different uncertainty and adverse weather events. The efficiency of the improved 
method in handling various uncertainties over the other techniques is confirmed by the 
results. 

This paper is organized as follows. Section 2 presents an overview of the types of uncertainty, 
the Stochastic Diffusion Process, modeling of TTF including aleatory and epistemic 
uncertainty, reliability and power quality indices of power distribution systems. Section 3 
presents the modeling of adverse weather events, network fault scenarios model, and the 
proposed algorithm of Stochastic Diffusion Process-based MCS for integrated reliability and 
power quality assessment. Section 4 presents the comparison of results between Sequential 
MCS (SMCS), and the proposed method for the modified IEEE 34 node test system. Section 5 
presents the conclusions and future scope of the research work. 

2. Background 

2.1. Types of uncertainty in power system reliability analysis 

In the context of power system reliability analysis, the TTF of a power system component 
represents the aleatory uncertainty (Awadallah and Milanović 2013) and is usually sampled by 
the exponential probability distribution function in the MCS method as shown below: 

𝑇𝑇𝐹 = −
1

𝜆𝑘

∗ ln(𝑈) =  −𝑋𝑘 ∗ ln(𝑈) (1) 

where 𝜆𝑘 represents the failure rate of kth branch and U is the uniform random number 
sampled using uniform probability distribution between [0, 1]. 

Furthermore, the TTF of a power system component depends on the failure rate of the 
respective component, which is usually evaluated from historical data and is constant 
throughout the sampling process in the MCS method. Thus, the failure rate represents the 
epistemic uncertainty and should be accounted in the reliability analysis. In this paper, both 
the aleatory and epistemic uncertainty are modeled more accurately using the Stochastic 
Diffusion Process, explained in detail in the following sections. 

2.2. Stochastic diffusion process 

In this section, the problem formulation follows the approach presented in Zárate-Miñano and 
Milano (2016). The stochastic differential equation usually defines the Stochastic Diffusion 
Process (SDP). A general form of single-dimensional SDP is: 

𝑑𝑋 = 𝑎(𝑋, 𝑡) ∗ 𝑑𝑡 + 𝑏(𝑋, 𝑡) ∗  𝑑𝑊𝑡 , 𝑡 € [0, 𝑇] (2) 

where 𝑋 is the stochastic process (TTF) and 𝑊𝑡 is a Weiner process, also known as Brownian 
motion. The numerical solution of (2) is as shown in Equation (3), and the terms 𝑎(𝑋, 𝑡) and 
𝑏(𝑋, 𝑡) are called drift and diffusion coefficients of the SDP. 

𝑋𝑡+1 =  𝑋𝑡  +  𝑎(𝑋, 𝑡) ∗  𝑑𝑡 + 𝑏(𝑋, 𝑡) ∗ 𝑑𝑊𝑡 (3) 

Therefore, the expression to sample TTF considering uncertainty is: 

𝑇𝑇𝐹 = −𝑋𝑡+1 ∗ ln (𝑈) (4) 

2.3. Modeling of TTF using Stochastic Diffusion Process 

In this section, the problem formulation follows the approach presented in Manohar and Atla 
(2021). The Stochastic Diffusion Process can be generated in different ways by considering the 
probability distribution function of a random variable. A Stochastic Diffusion Process 
representing the Weibull distribution has been developed to model the uncertainty of a 
random variable. 

The probability distribution function of the Weibull distribution is given by: 
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𝑓(𝑡;  𝛼, 𝛽) =  
𝛽

𝛼  
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽

) (5) 

where 𝛼 is the scale parameter and 𝛽 is the shape parameter. 

The drift coefficient is considered as proportional to the probability distribution function of 
Weibull distribution. Therefore, the drift coefficient representing the random variable, TTF is 
expressed as Equation (6): 

(𝑋, 𝑡)  = [
𝛽

𝛼 
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽

)] ∗ 𝑋𝑡 (6) 

Equation (7) represents the derived expression for the diffusion coefficient 𝑏(𝑋, 𝑡): 

𝑏(𝑋, 𝑡) = √[
𝛽

𝛼 
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽

)] ∗ 𝑋𝑡 (7) 

Thus, the expression to sample TTF in the proposed method is determined by substituting 
Equation (6) and Equation (7) into Equation (4) and is given by: 

𝑇𝐹 =  − 𝑋𝑡 ∗  [1 +   {[
𝛽

𝛼 
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽

)]} ∗  𝑑𝑡 

+ {√[
𝛽

𝛼 
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽

)] } ∗ 𝑑𝑊𝑡] × 𝑙𝑛 (𝑈) 

(8) 

2.4. Reliability and Power Quality Indices 

The reliability performance of an electrical distribution system is examined in terms of two 
important metrics, which are the System Average Interruption Frequency Index (SAIFI), and 
System Average Interruption Duration Index (SAIDI) (IEEE Std 1366-2012). These indices are 
calculated from the average load point outage frequency (𝜆𝑖) and outage duration (𝑈𝑖) of the 
distribution system and are expressed as follows: 

𝑆𝐴𝐼𝐹𝐼 =
∑ 𝑁𝐶,𝑖 ∗  𝜆𝑖

𝑛𝐿𝑃
𝑖=1

∑ 𝑁𝐶,𝑖
𝑛𝐿𝑃
𝑖=1

 (9) 

𝑆𝐴𝐼𝐷𝐼 =
∑ 𝑁𝐶,𝑖 ∗  𝑈𝑖

𝑛𝐿𝑃
𝑖=1

∑ 𝑁𝐶,𝑖
𝑛𝐿𝑃
𝑖=1

 (10) 

where 𝑛𝐿𝑃 represents the number of load points (LPs), 𝑁𝐶,𝑖 represents the number of 
customers at LP - i. 

The power quality performance of an electrical distribution system is examined in terms of an 
important index that is the System Average RMS variation Frequency Index (SARFI) (IEEE Std 
1564-2014): 

𝑆𝐴𝑅𝐹𝐼𝑥  =
∑ 𝑁𝐶,𝑖 ∗  𝑁𝑖

𝑥𝑛𝐿𝑃
𝑖=1

∑ 𝑁𝐶,𝑖
𝑛𝐿𝑃
𝑖=1

 (11) 

where 𝑁𝑖
𝑥 is the number of voltage sag events with magnitudes below x percent occurred at 

the load point-i. 

3. Proposed Methodology 

This section presents the proposed methodology, including the modeling of adverse weather 
events considering both aleatory and epistemic uncertainty. A brief explanation about the 
adverse weather events model, network fault scenarios model, and modified Integrated 
Reliability and Power Quality algorithm are detailed in this section. 
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3.1. Modeling of adverse weather events 

A jump diffusion process usually models the discrete random events associated with the 
stochastic process. The jump diffusion process is driven by jump amplitude, duration, and the 
number of jumps in the period of interest. In this paper, the impact of Cyclone events on 
sampling of TTF considering both aleatory and epistemic uncertainty is modeled by the 
integration of the jump diffusion process into SDP. The aleatory uncertainty is modeled by the 
Weiner process (𝑊𝑡) and the epistemic uncertainty is modeled by the Liu canonical process 
(𝑁𝑡). The mathematical representation of the Stochastic Jump Diffusion Process (SJDP) is 
shown below (Chirima, Chikodza, and Hove-Musekwa 2019): 

𝑑𝑋 = 𝑎(𝑋, 𝑡) ∗ 𝑑𝑡 + 𝑏(𝑋, 𝑡) ∗ 𝑑𝑊𝑡 +  𝜉 ∗  𝑑𝑁𝑡 (12) 

where 𝜉 is the jumps amplitude and 𝑁𝑡 represents the Liu canonical process which follows an 
uncertain normal distribution with a mean (μ) and standard deviation (σ) as shown below (Liu 
2015): 

𝛷(𝑥) =  (1 + 𝑒𝑥𝑝 (
𝜋(𝜇 − 𝑥)

√3 ∗ 𝜎
))

−1

 (13) 

In this paper, the adverse weather events considered are the occurrence of cyclone events. In 
general, cyclone events are characterized by high winds and lightning conditions. Therefore, 
the impact of wind and lightning on the failure rates is to be quantified in terms of the scaling 
factors of the failure rate during normal weather conditions. The failure rate models during 
high wind and lightning conditions considered in this study are as follows (Huda, Nazmul, and 
Živanović 2019): 

𝜆𝑤𝑖𝑛𝑑(𝑤(𝑡)) =  (1 +  𝛼𝑊 (
𝑤(𝑡)2

𝑤𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2 − 1)) ∗  𝜆𝑛𝑜𝑟𝑚 (14) 

 

𝜆𝑙𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 (𝑁𝑔(𝑡)) =  (𝛽𝐿 ∗  𝑁𝑔(𝑡) + 1) ∗  𝜆𝑛𝑜𝑟𝑚  (15) 

where, 𝑤(𝑡) --> wind speed at time t 

 𝑤𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 --> critical wind speed over which failure rate increased 

  𝜆𝑛𝑜𝑟𝑚 --> constant failure rate during normal weather conditions 

  𝑁𝑔(𝑡) --> ground flash density at time t 

  𝛼𝑊 and 𝛽𝐿 --> scaling parameters for wind and lightning respectively. 

The historical data of the occurrence of cyclone events at a specific location is collected to 

model the parameters of the jump diffusion process. The number of Cyclone events that 

occurred during the time duration T is modeled using a Poisson process with an occurrence 

rate of 𝜆𝑐𝑦𝑐𝑙𝑜𝑛𝑒𝑠 

𝑁𝑐𝑦𝑐𝑙𝑜𝑛𝑒𝑠  ~ 𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑐𝑦𝑐𝑙𝑜𝑛𝑒𝑠) (16) 

The magnitude of the wind and lightning events is sampled using a random number generated 
using a normal distribution with a mean (𝜇𝜉

𝑊, 𝜇𝜉
𝐿) and standard deviation (𝜎𝜉

𝑊, 𝜎𝜉
𝐿) shown below: 

𝜉𝑊 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝜉
𝑊, 𝜎𝜉

𝑊) 𝑎𝑛𝑑 𝜉𝐿 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝜉
𝐿 , 𝜎𝜉

𝐿) 

𝜉 =  𝜉𝑊 +  𝜉𝐿  
 

(17) 

The duration of the cyclone events is sampled using an uncertain normal random variable with 
the following inverse uncertainty distribution for mean cyclone event duration (𝜇𝑐𝑦𝑐𝑜𝑛𝑒𝑠) and 

standard deviation (𝜎𝑐𝑦𝑐𝑙𝑜𝑛𝑒𝑠) (Liu 2015): 

𝑑𝑁𝑡  ~ 𝛷𝑡
−1(𝑈) =  𝜇𝑐𝑦𝑐𝑜𝑛𝑒𝑠 + 

𝜎𝑐𝑦𝑐𝑙𝑜𝑛𝑒𝑠 ∗ √3

𝜋
∗ 𝑙𝑛 (

𝑈

1 − 𝑈
) (18) 
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Thus, the expression to sample TTF in the proposed method including adverse weather 
impacts is determined by adding the jump diffusion term into Equation (8) and is given by 
Equation (19): 

𝑇𝐹 =  − 𝑋𝑡 ∗  [1 +   {[
𝛽

𝛼 
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽

)]} ∗  𝑑𝑡 

+ {√[
𝛽

𝛼 
∗  (

𝑡

𝛼
)

𝛽−1

∗ exp (− (
𝑡

𝛼
)

𝛽

)] } ∗ 𝑑𝑊𝑡 +  𝜉 ∗  𝑑𝑁𝑡] × 𝑙𝑛 (𝑈) 

(19) 

3.2. Network fault scenario modeling 

In general, voltage sag events exhibit stochasticity and the primary cause of them in 
distribution systems is the occurrence of unbalanced network faults like LG, LL, LLG, and LLLG. 
In the voltage sag assessment approach, the network fault scenarios are characterized by four 
important uncertainties, i.e., fault type, affected phases, fault location, and fault resistance 
(Bolacell et al. 2020b). 

1) Fault type: 

In the MCS method, the type of the network fault is sampled using the uniform probability 
distribution function shown below: 

𝑓𝑡𝑦𝑝𝑒 ~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0, 1] (20) 

Table 1 presents the probability of occurrence for identifying the different types of faults 
sampled using Equation (20). In this paper, the probability of occurrence of various types of 
faults in the system is assumed to be the same as in literature (Bordalo, Rodrigues, and da 
Silva 2006). 

Sl. No. Fault Type Probability (%) Cumulative Probability (%) Sampling range 

1 LG 81 81 (0.00-0.81] 

2 LL 10 91 (0.81-0.91] 

3 LLG 6 97 (0.91-0.97] 

4 LLLG 3 100 (0.97-1.00] 

Table 1: Fault Types Probability 

2) Fault affected phases: 

In the MCS method, the phases affected for a specific network fault is sampled using the 
uniform probability distribution function shown below: 

𝑓𝑝ℎ𝑎𝑠𝑒 ~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0, 1] (21) 

Table 2 presents the probability of occurrence for identifying the different phases affected for 
a specific type of fault sampled using Equation (21). In this paper, the probability of occurrence 
of different phases is assumed to be the same as in literature (Bordalo, Rodrigues, and da Silva 
2006). 
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Sl. No. Fault Type Fault Phase Probability (%) Sampling range 

1 LG 

A->G 33.33 (0.00-0.33] 

B->G 33.33 (0.33-0.66] 

C->G 33.33 (0.66-1.00] 

2 LLG 

AB->G 33.33 (0.00-0.33] 

BC->G 33.33 (0.33-0.66] 

CA->G 33.33 (0.66-1.00] 

3 LL 

AB 33.33 (0.00-0.33] 

BC 33.33 (0.33-0.66] 

CA 33.33 (0.66-1.00] 

4 LLLG ABC->G 100 (0.00-1.00] 

Table 2: Fault Phases Probability for a Fault Type 

3) Fault location: 

The location of the sampled fault type on the distribution line section is usually sampled using 
the uniform probability distribution multiplied by the length of the line section as shown 
below: 

𝑓𝑙𝑜𝑐  ~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0, 1] ∗  𝑙𝐵 (22) 

where, 𝒍𝑩 is the length of the line section or branch. 

4) Fault resistance: 

The fault resistance is usually sampled using the Weibull distribution function and its 
cumulative distribution function is given by: 

𝑓𝑟𝑒𝑠 =  1 − 𝑒𝑥𝑝 (−
𝑅

𝛼𝑅

)
𝛽𝑅

 (23) 

where, 𝛽𝑅 > 0 and 𝛼𝑅 > 0 are the shape and scale parameters respectively and R is the fault 
resistance in ohms. 

3.3. Modified integrated reliability and power quality assessment 

The flowchart of the modified Integrated Reliability and Power Quality Assessment for power 
distribution systems are summarized in this section: 

Flowchart: 

The flowchart of the modified Integrated Reliability and Power Quality Assessment for power 
distribution systems is presented in Figure 1. 

4. Case Study and Results 

The modified IRPQ algorithm is implemented in Visual C++ and validated using modified IEEE 
34 node test system from (Bolacell 2016). Three different case studies have been analyzed, 
which is listed as follows: 

Case – 1) Base Case - Only Aleatory Uncertainty 

Case – 2) Both Aleatory and Epistemic Uncertainty 

Case – 3) Impact of Cyclones modeled as Aleatory and Epistemic Uncertainty 

The description of the test system along with the numerical results are discussed in this 
section. 
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Figure 1: Flowchart of Modified Integrated Reliability and Power Quality 

Assessment 
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4.1. Test system 

An unbalanced 24.9 kV modified IEEE 34 node test distribution system (Bolacell 2016) is 
considered to validate the proposed method and evaluate the impact of adverse weather 
events, as shown in Figure 2. 

The test system consists of 34 nodes, 1 transformer, 2 voltage regulators, 2 shunt capacitors, 
6 unbalanced spot loads, and 19 unbalanced distributed loads. The reliability data, line 
lengths, average load data, and customers’ data are considered from Bolacell (2016). 

 
Figure 2: Modified IEEE 34 Node Test Distribution System (Bolacell 2016) 

4.2. Adverse Weather Events Model – Data and analysis 

In this paper, it is assumed that the cyclone data of Bay of Bengal is overlapped on IEEE test 
system to find the adverse weather impacts. The historical cyclone events occurrence data 
from 2000 to 2020 of the Bay of Bengal is accessed from Knapp et al. (2018). The cyclone 
events dataset consists of the attributes like the year of the event, date and time of 
occurrence, maximum wind speed (knots), latitude and longitude of the start of the cyclone 
center, and the landfall data. A total of 75 cyclone events data is recorded for 21 years in the 
Bay of Bengal and the test system is assumed to be selected at the identified site in this 
research work. The number of cyclone events recorded at the location is 18; thus, the cyclone 
events occurrence rate (𝜆𝑐𝑦𝑐𝑙𝑜𝑛𝑒𝑠) evaluated is given by 0.85714 events/yr. 

Figure 3 shows the number of cyclone events occurred year wise from 2000 to 2020. It is 
observed that a maximum of 3 events occurred during 2009. Figure 4 shows the total duration 
(hours) of each cyclone event that affects the site of interest. Figure 5 shows the maximum 
wind speed of each cyclone event recorded at the site of interest. The critical wind speed 
(𝑤𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) is assumed to be 34 knots and for the wind speeds above critical speed, the failure 
rate is evaluated using Equation (14). Figure 6 shows the average ground flash density of each 
cyclone event recorded, and the failure rate due to lightning is estimated using Equation (15). 

Table 3 presents the estimated jump diffusion parameters based on historical cyclone event 
data. These parameters are used in the Stochastic Jump Diffusion Process to simulate adverse 
weather events. 
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Parameters Values 

𝜆𝑐𝑦𝑐𝑙𝑜𝑛𝑒𝑠(events/yr.) 0.85714 

𝜇𝜉
𝑊(f/yr.) 2.5751 

𝜎𝜉
𝑊(f/yr.) 2.9657 

𝜇𝜉
𝐿(f/yr.) 3.2283 

𝜎𝜉
𝐿(f/yr.) 1.6092 

𝜇𝑐𝑦𝑐𝑙𝑜𝑛𝑒𝑠  (yr./event) 0.012 

𝜎𝑐𝑦𝑐𝑙𝑜𝑛𝑒𝑠  (yr./event 0.0054 

Table 3: Estimated Jump Diffusion Parameters – Cyclone Events 
 

 
Figure 3: Historical 

Cyclone Events Data 
(Knap et al. 2018) 

 
Figure 4: Duration of 

Cyclone Events 
(Knap et al. 2018) 

 
Figure 5: Maximum Wind 
Speed of Cyclone Events 

(Knap et al. 2018) 

 
Figure 6: Ground Flash 

Density of Cyclone Events 
(Knap et al. 2018) 

4.3. Results and discussions 

This section presents the simulation results of the modified integrated reliability and power 
quality assessment algorithm for the IEEE 34 node test system. Three case studies are 
performed to study the impact of uncertainty and adverse weather events on reliability and 
power quality indices described as follows: 

Case – 1) Base Case - Only Aleatory Uncertainty 

Case 1 represents the simulation of IRPQ assessment using the MCS method that considers 
only aleatory uncertainty in TTF sampling. Table 4 presents the reliability and power quality 
indices evaluated using the MCS method for 5000 simulation years (Bolacell et al. 2016). 

 
 



Modeling of Adverse Weather Events in an Integrated Reliability and Power Quality Assessment of Distribution System Using Stochastic Diffusion Process 
Manohar P, Chandrasekhar Reddy Atla 

U.Porto Journal of Engineering, 8:2 (2022) 37-50 47 

 
Method Monte Carlo Simulation 

Index SAIFI (interruptions/yr./cust.) SAIDI (hours/yr./cust.) SARFI (events/yr./cust.) 

Value 0.80832 3.43586 4.2928 

Table 4: Reliability and Power Quality Indices – MCS 
 

MCS 

Sl. No. Fault Type No. of Faults Simulated Estimated Probability (%) 

1 LG 17464 81.36 

2 LL 2097 9.77 

3 LLG 1259 5.87 

4 LLLG 644 3.00 

  Total 21464  

Table 5: Number of Simulated Faults – MCS 

Table 5 presents the different types of faults simulated using the MCS method. The simulated 
probabilities of different fault types are found to be similar to the probabilities in Table 1. In 
all cases, the main assumption considered in this paper is that a fault on a branch will cause 
the voltage sag event at all nodes of the test system. 

Case – 2) Both Aleatory and Epistemic Uncertainty 

Case 2 represents the simulation of modified IRPQ assessment using the SDP_MCS method 
that considers both aleatory and epistemic uncertainty in TTF sampling. Table 6 presents the 
reliability and power quality indices evaluated using the SDP_MCS method for 5000 simulation 
years. 

Method Stochastic Diffusion Process Based Monte Carlo Simulation 

Index SAIFI (interruptions/yr./cust.) SAIDI (hours/yr./cust.) SARFI (events/yr./cust.) 

Value 0.82173 3.50307 4.2762 

Table 6: Reliability and Power Quality Indices – SDP_MCS 
 

SDP_MCS 

Sl. No. Fault Type No. of Faults Simulated Estimated Probability (%) 

1 LG 17396 81.36 

2 LL 2124 9.93 

3 LLG 1227 5.74 

4 LLLG 634 2.97 

  Total 21381  

Table 7: Number of Simulated Faults – SDP_MCS 

Table 7 presents the different types of faults simulated using the SDP_MCS method. The 
simulated probabilities of fault types are found to be similar to the probabilities in Table 1. 

Case – 3) Impact of Cyclones modeled as Aleatory and Epistemic Uncertainty 

Case 3 represents the simulation of modified IRPQ assessment using the SJDP_MCS method 
that considers the impact of cyclone events in TTF sampling. Table 8 shows the reliability and 
power quality indices calculated using the SDP_MCS method over a period of 5000 simulation 
years. There is a significant increase in the reliability and power quality indices when 
compared to Cases 1 and 2. 

Method Stochastic Jump Diffusion Process Based Monte Carlo Simulation 

Index SAIFI (interruptions/yr./cust.) SAIDI (hours/yr./cust.) SARFI (events/yr./cust.) 

Value 1.43704 6.21955 7.6266 

Table 8: Reliability and Power Quality Indices – SJDP_MCS 
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Table 9 presents the different types of faults simulated using the SJDP_MCS method. It is 
observed that there is an increase in the number of faults compared to Cases 1 and 2 because 
of cyclone events. 

SJDP_MCS 

Sl. No. Fault Type No. of Faults Simulated Estimated Probability (%) 

1 LG 30963 81.20 

2 LL 3766 9.88 

3 LLG 2286 5.99 

4 LLLG 1118 2.93 
 Total 38133  

Table 9: Number of Simulated Faults – SJDP_MCS 

Comparison of results 

Table 10 compares the reliability and power quality indices of the three cases. The results 
conclude that ignoring the epistemic uncertainty leads to underestimation of distribution 
system reliability and power quality performance. 

 
Case-1: Only 

Aleatory Uncertainty 
Case-2: Both Aleatory and 

Epistemic Uncertainty 
Case-3: Both Aleatory and Epistemic 
Uncertainty including Cyclone events 

 MCS SDP_MCS Error (%) SJDP_MCS Deviation (%) 

SAIFI 0.80832 0.82173 -1.66 1.43704 -77.78 

SAIDI 3.43586 3.50307 -1.88 6.21955 -80.88 

SARFI 4.2928 4.2762 0.387 7.6266 -78.35 

Table 10: Comparison of Indices - Methods 

Furthermore, it is observed that the adverse weather events have very significant impact on 
the reliability and power quality indices. Figure 7 illustrates the number of faults simulated in 
all the methods. It is observed that the there is an increase in the faults due to the occurrence 
of adverse weather events. 

 
Figure 7: Number of Faults Simulated – MCS, SDP_MCS and SJDP_MCS 

The analysis concludes that the proposed method, incorporating aleatory and epistemic 
uncertainty into TTF sampling, yields more accurate indices values. Furthermore, adverse 
weather events have been observed to decrease the reliability and power quality in the 
system. Finally, the modified IRPQ assessment algorithm has more innovatively modeled the 
various uncertainties and adverse weather events. 

5. Conclusions and Future Scope 

This research illustrates the application of the Stochastic Diffusion Process for modeling 
aleatory and epistemic uncertainty in integrated reliability and power quality assessment of 
power distribution systems. The aleatory and epistemic uncertainty is modelled into the drift 
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and diffusion coefficients of the Stochastic Diffusion Process that describes TTF sampling. 
Furthermore, the adverse weather events are modelled into SDP with the integration of the 
Jump diffusion process. The parameters of the Jump diffusion process are estimated from the 
historical cyclone events data collected for a specific location. The efficacy of the proposed 
method in handling uncertainty is validated by the modified IEEE 34 node test system. Three 
different case studies have been performed to investigate the impact of aleatory and 
epistemic uncertainty and adverse weather events on TTF sampling during the permanent and 
temporary failures. 

Numerical results reveal that the improved method is capable of modeling any uncertainty 
associated with TTF. It is concluded that aleatory and epistemic uncertainty have a significant 
impact on distribution system reliability and power quality indices. Furthermore, considering 
the adverse weather parameters in reliability analysis demonstrated the decrease in system 
reliability as expected. It is concluded that there is a need to implement reliability and power 
quality improvement alternatives in order to quantify distribution system performance in 
terms of supply continuity and quality. Further, the proposed method is better suited for 
modeling various uncertainties associated with DERs and performing integrated reliability and 
power quality analysis more effectively. 

As regards to future research, the Stochastic Diffusion Process can be used to model the 
various uncertainties associated with Energy Storage Systems and Electric Vehicles.  
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