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Abstract 
The cracks alter the physical and modal properties of the beam, i.e., stiffness, 
damping, natural frequency, and mode shapes, and, in turn, the dynamic response 
of the beam changes to a considerable extent. The condition monitoring of the 
beams is essential to avoid its catastrophic failure in applications. A basic criterion 
has been followed for modal parameters like natural frequencies, mode shapes, and 
stiffness for the possible crack detection. In contrast, damping as a dynamic property 
to represent structural damage has been limited due to the difficulties in measuring 
damping and analysis. Therefore, in this study, the effect of various possible crack 
profiles, i.e., V-shaped and U-shaped, on the applicability of using the damping 
criterion for determining the presence of damage in the cantilever structure was 
investigated. The damping loss factor for all the cracked cases of a cantilever beam 
was computed using ANSYS and experimental analysis. The numerical results of the 
damping loss factor were compared with experimental results. It was understood 
that the results were susceptible to the crack geometries changes. 

Author Keywords. Effective Mass, Dewesoft FRF, Impact Hammer, V-shaped Crack, 
U-shaped Crack, Structural Health Monitoring, ANSYS, Torsional Stiffness, Resonant 
Amplitude. 
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1. Introduction 

A structural health monitoring system is generally designed to monitor, inspect and test the 
health and performance of structures such as beams, buildings, bridges, and dams, to ensure 
their safety. It mainly consists of two major components: the smart sensing technologies and 
the damage detection algorithms. The smart sensing technologies use fiber optic sensors, 
piezoelectric sensors, laser Doppler vibrometers, and accelerometers to monitor various 
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physical responses of the structures or any set-up under investigation. The damage detection 
algorithms reveal the damage characteristics from the responses measured by smart sensing 
sensors. 

Bayissa, Haritos, and Thelandersson (2008) developed a new damage identification technique 
based on the statistical moments of the energy density function of the vibration responses in 
the time–frequency domain. Using the continuous wavelet transform, they decomposed the 
vibration responses into discrete energy distributions as a joint function. Then, they extracted 
the principal structural response features from the energy density functions using the 
moments. The zeroth-order moment known as the total energy of the joint density function 
was then computed at each measurement grid point for the pre-damage and post-damage 
states and then implemented for detection and localization of damage in a concrete plate 
model in a steel plate girder of a bridge structure. Curadelli et al. (2008) presented the novel 
scheme to detect structural damage by identifying an instantaneous damping coefficient using 
a wavelet transform. The laboratory tests and the numerical simulations exhibited significant 
changes in the damping characteristics of commonly used structural systems. Therefore, it 
was ensured that the parameters, which characterize the structural damping, could be used 
as a damage-sensitive system property. Frizzarin et al. (2010) developed the baseline free, 
time domain damage detection method for concrete structures. The method was based on 
the analyzing nonlinear damping from the measured structural vibration responses. The 
effectiveness of the proposed method was verified through a large-scale concrete bridge 
model subjected to different levels of seismic damage caused by the shaking table tests. The 
nonlinear damping was increased with respect to the seismic damage. Kawiecki (2001) studied 
the application of arrays of surface-bonded piezo elements to determine the modal damping 
characteristics of a tested structure, and the damping characteristics were then used for 
detecting the structural damage. Khalkar and Ramachandran (2017a, 2018a, 2019) studied 
the dynamic behavior of a cracked beam. They have covered several aspects, including the 
effect of crack geometry and crack location on the dynamic behavior of structures. They also 
emphasized the damage quantification and the implementation of existing mathematical 
models to assess the dynamic behavior of structures with various crack geometries. 
Kyriazoglou, Le Page, and Guild (2004) expressed that the measurement of specific damping 
capacity (SDC) was a proper potential method for detecting damage. In this study, the 
measurement and analysis of SDC of composite beams in flexure were carried out using quasi-
static loading or fatigue, and beams were tested before and after the introduction of damage. 
The results of this study indicated that the measurement of SDC was a promising technique 
for detecting initial damage in woven fabric composites. Razak and Choi (2001) conducted an 
experimental investigation to study the effect of general corrosion on the modal parameters 
of reinforced concrete beams. The states of damage in the test beams were measured by 
measuring crack width and spalling. Modal tests were performed on the test beams after 
corrosion damage, and the extracted modal parameters were compared against the control 
beam. The obtained results showed the considerable changes in the natural frequencies and 
damping ratio. Orhan et al. (2016) introduced the new crack model (combination of V-shaped 
and rectangular-shaped crack). They investigated the effect of crack depth on the natural 
frequency of a composite beam. 

From the literature survey, it was found that limited research works have been carried out on 
the damping-based crack detection method in the condition monitoring of structures. The 
damage detection is a vital phenomenon for allowing wider use of composite laminates in 
critical applications. Furthermore, the damping characteristics are frequently associated with 
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the structural as well as material damage. In this research work, it was decided to check the 
applicability of the damping-based damage detection technique in the cracked structure. The 
damping loss factor in the cracked structures was obtained using experimental and numerical 
methods. The analysis was extended for different profiles of cracks artificially induced in the 
cantilever structure at different locations from the fixed end. The crack depths were also 
varied to investigate the effect of damping in damage detection. 

2. Theoretical Analysis 

2.1. Stiffness model of a cracked beam 

In this research study, V-shaped and U-shaped cracks (Khalkar and Ramachandran 2018b) 
were considered on the cantilever beam to study the effect of shape of the crack on the modal 
properties of the beams. Figure 1 and Figure 2 show the configurations of a cantilever beam 
with V-shaped and U-shaped cracks. When a beam carries a crack at any location, then the 
two segments of the beam on either sides of the crack can be assumed to be connected by 
the torsional spring, as shown in Figure 3. The torsional stiffness (Khalkar and Ramachandran 
2019) of a cracked beam was calculated using Equation (1). 

 
Figure 1: A cracked cantilever beam with a V-shaped crack 

 

 
Figure 2: A cracked cantilever beam with a U-shaped crack 
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Figure 3: Stiffness model of a cracked cantilever beam 

 

𝐾𝑇 =
𝐸𝐵𝐻2
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 (1) 

The Ф is the variable and it is the function of crack depth ratio (a/H); and it is given by 
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(2) 

Hence, the equivalent stiffness of the open-edge cracked beam (𝒌) was computed using 
Equation (3). 

𝒌 =
𝐾𝑇𝐾𝐼

𝐾𝑇 + 𝐾𝐼

 (3) 

The stiffness of an intact or un-cracked cantilever beam (KI) was computed using Equation (4), 
where E, I and L are the Young’s modulus, mass moment of inertia and length of the 
cantilevered beam respectively. The torsional stiffness and open-edged cracked beam for 
various cracked cases are presented in Table 3 and Table 4, respectively. 

𝐾𝐼 =
3𝐸𝐼

𝐿3
  (4) 

2.2. Modeling of a cracked cantilever beam as a discrete system 

The transverse vibration of an open-edge cracked cantilever beam was modeled as a single-
degree of freedom system. An equivalent single-degree freedom (Thomson and Dahleh 1998) 
system model is shown in Figure 4. When the cantilever beam vibrates with first natural 
frequency, it gives the fundamental bending mode. For this reason, the first fundamental 
mode of a cracked cantilever beam was predominantly excited; to get the resonance 

amplitude. The magnification factor (
𝑋

𝑋𝑠𝑡 
) of the vibrating beam is independent of the 

harmonic force; hence, 50 N harmonic forces were selected and applied at the free end of the 
cracked cantilever beam. 
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Figure 4: A cracked cantilever beam modeled as a spring mass damper system with 

harmonic force 

The free-body diagram for the spring-mass damper system, based on Newton’s law of motion, 
is shown in Figure 5. The fundamental equation of motion is given in Equation (5). 

 
Figure 5: A Free body diagram of a cracked cantilever beam 

 
𝑚�̈�  + 𝑐�̇� + 𝑘𝑥 = 𝐹0 𝑠𝑖𝑛𝜔𝑡  (5) 

The solution to Equation (5) consists of two parts, i.e., complementary function and particular 
integral. In this study, the attention was given to the second part, i.e., forced vibration. When 
a system is subjected to harmonic excitation, it is forced to vibrate at the same frequency as 
excitation. 

Assume the particular integral solution of Equation (5) to be in the form of Equation (6). 

𝑥 = 𝑋𝑠𝑖𝑛(𝜔𝑡 − 𝛷′) (6) 

where, 𝑋 is the amplitude of oscillation and 𝛷′ is the phase of the displacement concerning 
excitation force. 

The amplitude of vibration was found by substituting the value of Equation (6) in Equation (5). 

𝑋 =  𝐹0/√(𝑘 − 𝑚𝜔2)2 + (𝑐𝜔)2 (7) 

Dividing numerator and denominator of Equation (7) by 𝑘 
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Equation (8) can be expressed in the following terms: 

𝑐𝑐 = 2𝑚𝜔𝑛 

ζ =c/𝑐𝑐 

𝑐𝜔

𝑘
= 2ζ ω/ωn 

Equation (7) can be rewritten as follows: 

𝑋 =
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𝑘

√[ 1 − (
𝜔
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)

2

]
2

+ [ 2ζ ω/ωn]2

 
(9) 

But, 
𝐹0

𝑘
= 𝑋𝑠𝑡 , where 𝑋𝑠𝑡 is the zero frequency deflection. 

The ratio between steady state amplitude (X) and zero frequency deflection (Xst) is called as 
magnification factor 

At resonance, 𝜔 = 𝜔𝑛, and 𝑋 = 𝑋𝑟𝑒𝑠 , hence Equation (8) becomes 

𝑋𝑟𝑒𝑠 =  

𝐹0

𝑘

2ζ 
 (10) 

 

∴  𝜁 =  

𝐹0

𝑘

2𝑋𝑟𝑒𝑠
 (11) 

Thus, the damping loss factor of each cracked case is obtained by substituting the value of 
open-edge cracked beam stiffness and resonant amplitude in Equation (11). The numerical 
damping loss factors of all the cracked cases are presented in Table 6. 

3. Simulated Crack Configurations 

Geometric properties: The geometric properties of the cantilever beam are presented in 
Table 1. The material of the cantilever beam was EN 42. The properties of EN 42, i.e., Modulus 
of elasticity and Density, were tested in ELCA Lab, Pune, India and are presented in Table 2. 

Length 
(m) 

Width 
(m) 

Depth 
(m) 

0.5 0.02 0.02 

Table 1: Geometric properties of a cantilever beam 

 
Property Euro Norm 42 

Young’s modulus 
(N/m2) 

2.0549 x 1011 

Mass density 
(kg/m3) 

7840 

Mass (kg) 1.568 
Effective mass (kg) 0.3695 

Table 2: Material properties of EN 42 cantilever beam 

In the present study, a total of 24 cracked specimens were considered to investigate the effect 
of the different profiles of cracks on the stiffness and modal damping loss factor of a cantilever 
beam. Two separate cases were considered as case 1 and case 2. 



Experimental and Numerical Investigation of a Cracked Cantilever Beam for Damping Factor to Access its Applicability in the Crack Detection 
V. Khalkar, S. G. Kumbhar, K. Logesh, P. Hariharasakhtisudhan, S. D. Jadhav, B. A. Danawade, S. H. Gharat, L. M. Jugulkar, J. G. Borade 

U.Porto Journal of Engineering, 8:2 (2022) 169-186 175 

Case 1: In this case, 12 specimens with V-shaped cracks induced in the cross-section were 
considered. Out of 12 specimens, three specimens contained cracks at a distance of 100 mm 
from the fixed end. Then, three specimens carried cracks at the distance of 200 mm, and three 
more specimens possessed cracks at 300 mm from the fixed end. The remaining three 
specimens were considered with cracks at 400 mm from the cantilevered end. At all these 
locations, the crack depth was varied from 5 mm to 15 mm by an interval of 5 mm. 

Case 2: The location of the cracks and depth of the cracks are similar to case 1; the only 
difference is that instead of V-shaped cracks, U-shaped cracks were considered in the beams. 

4. Numerical Modeling 

ANSYS 12.1 finite element program was used to determine the cracked cantilever beams' zero-
frequency deflection and resonant amplitude. The zero-frequency deflection of a three-
dimensional cracked beam was obtained through a typical procedure. First, a rectangular area 
of required geometric properties was created and then extruded to create the three-
dimensional model. The crack was modeled by creating a small volume model at the required 
location in the primary model. The crack volume was then subtracted from the volume of the 
primary model. The finite element model of the cracked beam was obtained using a solid 186 
element. A static load of 50 N was applied at the free end of the cantilever beam to get the 
zero-frequency deflection (Khalkar and Ramachandran 2017b). The stiffness of a cracked 
beam was determined using the conventional formula, i.e., Stiffness= Load/Deflection. The 
one case of a cracked cantilever beam carrying a static load at the free end is shown in Figure 
6. From Figure 6, it is clear that the cantilever beam has a crack at the location where the mesh 
type is irregular. The stiffness results for various cracked cases are presented in Table 4. In this 
study, the difference between the total mass of an intact beam (M) and the cracked beam (m) 
with the most considerable crack depth was negligibly small. Hence, for all the cracked cases, 
the total mass of an intact beam was considered the total mass of cracked beams, i.e., M = m. 
When the cantilevered beam vibrates in the first bending mode, the only effective mass of the 
beam comes into the picture and leads to producing the vibration. In this research study, the 
effective mass of a cracked cantilever beam (Khalkar and Ramachandran 2017a) was chosen 
as, i.e., meff = 0.2357M. The effective mass (meff) of an intact cantilever beam or cracked 
cantilever beam is presented in Table 2. The effective mass was considered to find the 
resonant amplitude of the cracked cantilever beams. The mass 21-point element and 
combination 14 elements were used to model a discrete model in ANSYS. A harmonic force of 
50 N was applied to discrete system to obtain the displacement response of the system. In 
harmonic analysis, the frequency sweep of zero to 80 Hz was selected. One case of the 
equivalent spring-mass-damper system carrying the harmonic force is shown in Figure 7. The 
resonant amplitude computed for the various cracked cases is presented in Table 5. The one 
FEA plot of harmonic analysis of a cracked cantilever beam is shown in Figure 8, i.e., amplitude 
versus excitation frequency. 

 
Figure 6: A cracked cantilever beam carries a zero-frequency point load at the free 

end 
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Figure 7: An equivalent spring-mass-damper model of a cracked cantilever beam 

subjected to a harmonic force 

 

 
Figure 8: FEA plot of harmonic analysis of a cracked cantilever beam 

5. Experimental Investigation 

The main aim of the experimentation is to compute the damping loss factor of cracked cases 
of the beam. A cantilever beam was machined from EN 42 material. The open-edge V-shaped 
and U-shaped cracks were produced on the specimens using wire Electro Discharge Machining 
(EDM). For experimental analysis, i.e., Dewesoft Frequency Response Function (FRF), four-
channel Fast Fourier Transform (FFT) analyzer, accelerometer, impact hammer, and related 
accessories were used. The experimental setup is shown in Figure 9. A disturbance was given 
on the specimen using the impact hammer to induce the transverse vibration of a cracked 
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beam. The Dewe-FRF plots of damping loss factors of various cracked cases are shown in 
Figures 10-13. 

 

 
Figure 9: Experimental Rig 

 

 
Figure 10: Damping loss factor of a V-shaped cracked case; Crack location 100 mm; 

Crack depth 5 mm 
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Figure 11: Damping loss factor of a U-shaped cracked case; Crack location 100 mm; 

Crack depth 5 mm 

 
 

 
Figure 12: Damping loss factor of a V-shaped cracked case; Crack location 200 mm; 

Crack depth 5 mm 
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Figure 13: Damping loss factor of a U-shaped cracked case; Crack location 200 mm; 

Crack depth 5 mm 

6. Results and Discussion 

In this study, the stiffness of a cracked cantilever beam that had different crack geometries, 
crack locations, and crack depths was investigated by theoretical and numerical methods. The 
bending stiffness (K) of the EN 42 beam is 65756.8 N/m. The torsional and bending stiffness 
of various cracked cases is presented in Table 3 and Table 4. The numerical resonant 
amplitudes for various cracked cases are presented in Table 5. Table 6 shows the numerical 
and experimental damping loss factors of various cracked cases of beams. 

Crack 
location 
(mm) 

Crack 
depth 
(mm) 

Torsional 
Stiffness 
(KT) N-
m/rad 

Bending 
stiffness 
(k) N/m 

100 5 1438120 62881.59 

10 269764.1 52869.5 

15 51631.3 28922.09 

200 5 2556658 64107.95 

10 479580.6 57827.84 

15 91788.99 38311.09 

300 5 5752480 65013.63 

10 1079056 61979.8 

15 206525.2 49876.37 

400 5 23009920 65569.42 

10 4316225 64770.04 

15 826100.9 60908.54 

Table 3: Torsional stiffness and bending stiffness of EN 42 open-edged cracked 
cantilever beam 
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Crack 
location 

(mm) 

Crack 
Depth 
(mm) 

Methods Bending stiffness (k) N/m 

V-shaped crack U-shaped crack 

100 5 Numerical method 63291.14 63000 

Theoretical method 62881.59 62881.59 

Percent error 2.605229 0.187952 

10 Numerical method 53705.69 52576.23 

Theoretical method 52869.5 52869.5 

Percent error 3.497195 -0.5578 

15 Numerical method 30674.85 28074.11 

Theoretical method 28922.09 28922.09 

Percent error 7.572252 -3.02051 

200 5 Numerical method 64432.99 64184.85 

Theoretical method 64107.95 64107.95 

Percent error 2.465414 0.11981 

10 Numerical method 58343.06 57670.12 

Theoretical method 57827.84 57827.84 

Percent error 2.836579 -0.27349 

15 Numerical method 39904.23 37735.84 

Theoretical method 38311.09 38311.09 

Percent error 5.884639 -1.52441 

300 5 Numerical method 65189.05 65104.16 

Theoretical method 65013.63 65013.63 

Percent error 2.234698 0.139054 

10 Numerical method 62344.14 61957.86 

Theoretical method 61979.8 61979.8 

Percent error 2.543783 -0.03541 

15 Numerical method 51124.74 49261.08 

Theoretical method 49876.37 49876.37 

Percent error 4.364607 -1.24904 

400 5 Numerical method 65703.02 65703.02 

Theoretical method 65569.42 65569.42 

Percent error 2.170239 0.203339 

10 Numerical method 64935.06 64850.84 

Theoretical method 64770.04 64770.04 

Percent error 2.220025 0.124594 

15 Numerical method 61425.06 60827.25 

Theoretical method 60908.54 60908.54 

Percent error 2.795213 0.13364 

Table 4: The bending stiffness of EN 42 cracked cantilever beams 
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Crack 
location 

(mm) 

Crack 
Depth 
(mm) 

Xres, Resonant amplitude 
(m) 

V-shaped 
crack 

U-shaped 
crack 

100 5 0.01411 0.01538 
10 0.008272 0.00732 
15 0.01704 0.01056 

200 5 0.01067 0.01127 
10 0.03555 0.02404 
15 0.008559 0.01211 

300 5 0.009191 0.009337 
10 0.01927 0.02264 
15 0.009295 0.01422 

400 5 0.008398 0.008398 
10 0.009642 0.009801 
15 0.02984 0.04639 

Table 5: The numerical resonant amplitude of EN 42 cracked cantilever beams 

 
Crack 

location 
(mm) 

Crack 
Depth 
(mm) 

Numerical damping 
loss factor 

% 
variation 

Experimental 
damping loss factor 

% 
variation 

V-shaped 
crack 

U-shaped 
crack 

V-shaped 
crack 

U-shaped 
crack 

100 5 0.027994 0.025801 -8.4993 0.0277 0.0268 3.249 
10 0.056274 0.064959 13.36972 0.038 0.0391 -2.894 
15 0.047829 0.084328 43.2824 0.038 0.0377 0.789 

200 5 0.036364 0.034561 -5.21647 0.0271 0.0273 -0.738 
10 0.012053 0.018032 33.15691 0.0291 0.0294 -1.030 
15 0.073198 0.054707 -33.8 0.04 0.042 -5 

300 5 0.041726 0.041127 -1.45622 0.028 0.027 3.571 
10 0.02081 0.017822 -16.7604 0.0337 0.033 2.077 
15 0.052609 0.035689 -47.4087 0.0332 0.03 9.638 

400 5 0.045308 0.045308 0 0.0268 0.03 -11.940 
10 0.039929 0.039333 -1.5172 0.0332 0.036 -8.433 
15 0.013639 0.00886 -53.9495 0.028 0.03 -7.142 

Table 6: Numerical and Experimental Percentage variation of damping loss factor 
between V-shaped and U-shaped cracked cases for EN 42 cantilever beam 

 

 
Figure 14: Variation of resonant amplitude with respect to excitation frequency; 

crack location 100 mm; crack depth 15 mm 
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Figure 15: Variation of resonant amplitude with respect to excitation frequency; 

crack location 200 mm; crack depth 10 mm 

 

 
Figure 16: Variation of resonant amplitude with respect to excitation frequency; 

crack location 300 mm; crack depth 15 mm 

 

 
Figure 17: Variation of resonant amplitude with respect to excitation frequency; 

crack location 400 mm; crack depth 15 mm 
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Figure 18: % Experimental variation of damping factor between V-shaped and U-

shaped cracked cases for same crack configuration 

 

 
Figure 19: % Numerical variation of damping factor between V-shaped and U-

shaped cracked cases for same crack configuration 

Figures 14-17 show the variation in the displacement response of a cracked cantilever with 
respect to the excitation frequency. The V and U-shaped cracked cases of a cantilever beam 
give the maximum displacement response when the excitation frequency is equal to the 
natural frequency of the cracked beam. Figures 14-17 showed a significant difference for the 
resonant vibration amplitude between the U and V-shaped cracked cases for the same 
configurations, i.e., crack depth and crack location. It means that a cracked cantilever beam's 
dynamic response, i.e., resonant amplitude, is highly sensitive to the crack geometries for the 
same configurations. Figures 18-19 show the experimental and numerical percentage 
variation of damping loss factor between the V and U-shaped cracked cases for same the 
configurations. From Figure 18, experimentally, it was found that the percentage variation for 
the damping loss factor between the V and U-shaped crack models was varied from 0 to 9.638 
on the positive side and from 0 to -11.94 on the negative sides. It means that the variation for 
the damping loss factors corresponding to change in the crack geometries (V-shaped and U-
shaped cracks) shows a minor effect on the damping loss factor. On the other hand, from 
Figure 19 numerically, it was revealed that the percentage variation for the damping loss 
factor between the V and U-shaped crack models was noted to be varying from 0 to 43.2824 
on the positive side and from 0 to -53.9495 on the negative sides. It implies that the variation 
between the damping loss factors corresponding to the crack geometries plays a key role. 
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Therefore, it was clearly understood that the numerical damping loss factor results were 
susceptible to the changes in the crack geometries. 

From the previous numerical study, it was found that stiffness (Khalkar and Ramachandran 
2018a), natural frequency (Khalkar and Ramachandran 2019), and mode shapes (Khalkar and 
Logesh 2020) are less sensitive to the change in crack geometries. It indicates that the 
numerical damping model needs some correction to give valid results for the damping 
parameter. An attempt has been made to use the effect of damping loss factor as a basic 
criterion for crack detection in the structures. Hence, through this study, it is clear that the 
numerical-based crack detection method using damping loss factor cannot satisfactorily 
predict the location and depth of the crack in structures irrespective of the crack geometries, 
i.e., V-shaped and U-shaped open edge cracks. 

7. Conclusions 

Numerical and theoretical methods were used to analyze the steel cracked beam’s free 
vibrations with various crack locations, crack depths and crack geometries. The following 
findings can be made from a free vibration investigation of a cracked cantilever beam: 

 Numerical damping loss factors of a cracked cantilever beam are susceptible to the 
change of crack geometries than the other modal parameters like natural frequency, 
stiffness and mode shapes. The inconsistencies of damping in portraying damage are 
different from the natural frequencies, stiffness, and mode shapes, need to be further 
clarified. 

 Experimental damping loss factors of a cracked cantilever beam are less sensitive to the 
change of crack geometries than numerical damping loss factors in beams for the same 
configurations. 

 When damping is used to describe the damage, clarifying the damping mechanism and 
creating a valid damping model are key components to obtain the reliable results. 
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Nomenclature 

L Length of the beam, m 

L1 Distance of the crack from 
cantilevered end, m 

B Width of the beam, m 

a Depth of crack, m 

ζ Damping loss factor of a 
cracked beam 

c Damping coefficient, N-
sec/m 

𝛷′ Phase angle, degree 

cc Critical damping 
coefficient, N-sec/m 

KT Torsional stiffness of the 
cracked beam, N-m/rad 

H Depth of the beam, m 

k Open-edged crack beam 
stiffness, N/m 

KI Intact beam stiffness, N/m 

meff Effective mass of the 
cracked cantilever beam, 
kg 
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m Total mass of the cracked 
cantilever beam, kg 

fn Natural frequency of 
cracked beam, Hertz 

µ Poisson’s ratio 

E Young’s modulus, N/m2 

ρ Mass density of the beam, 
kg/m3 

M Total mass of the intact 
cantilever beam, kg 

xres Resonant amplitude, m 

Abbreviation 

SPC Specific Damping 
Coefficient 

EN Euro Norm 

FEA Finite Element Analysis 

FBD Free Body Diagram 

FRF Frequency Response 
Function 

FFT Fast Fourier Transform 

 


