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Abstract 
Whispered speech is a mode of speech that differs from normal speech due to the 
absence of a periodic component, namely the Fundamental Frequency that 
characterizes the pitch, among other spectral and temporal differences. Much 
attention has been given in recent years to the application of Machine Learning 
techniques for voice conversion tasks. The whisper-to-normal speech conversion is 
particularly challenging, however, especially with respect to the Fundamental 
Frequency estimation. Based on the most recent literature, this survey assesses the 
state-of-the-art regarding Machine Learning based whisper-to-normal speech 
conversion, identifying trends both on modeling and training approaches. The 
proposed solutions include Generative Adversarial Network based, Autoencoder 
based and Bidirectional Long Short-Term Memory based frameworks, among other 
Deep Neural Network based architectures. In addition to Parallel versus Non-Parallel 
training, time-alignment requirements and strategies, datasets, vocoder usage, as 
well as both objective and subjective evaluation metrics are also covered by the 
present survey. 
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1. Introduction 

Whispered speech is a special mode of speech that differs from normal speech, most 
noticeably for the lack of vocal folds contribution during speech production, that is to say that 
it lacks phonation (or voicing). Since the vocal folds do not vibrate during whispered speech, 
the resulting speech signal lacks the periodic component that is present in certain regions of 
normal speech, namely during vowels and voiced regions of voiced consonants. Hence, this 
signal has noisier characteristics, tending to be less intelligible and more susceptible to the 
interference from surrounding noise sources (Silva, Oliveira, and Ferreira 2021). Despite these 
disadvantages, individuals may still communicate through whisper, either intentionally (e.g., 
due to privacy reasons) or as result of a temporary or permanent condition, such as vocal folds 
paralysis or lack of vocal folds due to a laryngectomy, among others (Lian et al. 2019a). 

In a broad sense, Voice Conversion (VC) systems aim at altering speech characteristics while 
preserving the original signal linguistic content (Huang, Lin, and Lee 2021). Its applications 
range from manipulating speaker/gender identity, style (e.g., from neutral to emotional 
speech) or mode of speech, such as from normal speech to singing, Lombard or whispered 
speech. Such systems have been greatly improved in recent years through the application of 
Machine Learning (ML) techniques, including Deep Neural Networks, or DNNs (Huang, Lin, and 
Lee 2021). The conversion from whispered to normal speech, however, is particularly 
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challenging largely due to the absence of a Fundamental Frequency (F0) present in the original 
signal to rely on during reconstruction, as a result of the aforementioned lack of vocal folds 
contribution (Parmar et al. 2019). To the best knowledge of the author of this survey, 
presently, there is still no efficient method of reliably estimating the pitch of the targeted 
normal speech from the remaining acoustic cues present in the original whispered speech. 
Furthermore, while a well estimated F0 is of the most importance due to its perceptual impact 
in terms of prosody and naturalness (Silva, Oliveira, and Ferreira 2021), there are other 
spectral and temporal differences between whisper and normal speech that conversion 
systems may need to address as well (Parmar et al. 2019). Motivations for an efficient 
whispered to normal speech conversion may include allowing patients to communicate in a 
more natural and comfortable manner or to improve human-machine interaction in the 
context of Automatic Speech Recognition (ASR), especially given the growing prominence of 
voice assistants in recent years (Niranjan et al. 2020). 

The present survey aims mainly at identifying which ML approaches have been adopted in the 
most recent literature w.r.t whisper-to-normal speech conversion, discussing not only what 
the main challenges are but also how they have been addressed in the most recent proposals. 
Additional objectives include identifying which vocoders, datasets and evaluation metrics are 
most commonly used in this context, as well. The remaining of this document is organized as 
follows: Sec.2 addresses the main differences between whispered and normal speech from 
the speech production and signal processing perspectives and how they are typically 
approached by VC systems; Sec.3 presents the surveying methodology and the resulting paper 
selection; Sec.4 describes the respective modelling and training approaches; Sec.5 covers the 
dataset and vocoder choices; Sec.6 addresses the evaluation metrics implemented in the 
original papers; and lastly, Sec.7 concludes with a brief discussion and final remarks. 

2. Whispered vs. Normal Speech 

As previously indicated, whispered speech is produced without the contribution of the vocal 
folds. In this case, the speech signal is the result of constricted turbulent air that flows through 
the glottis (excitation) and that is further modulated by the oral and nasal cavities 
(articulation) that composes the vocal tract (Perrotin and McLoughlin 2020). As a result of the 
different coupling between the trachea and the vocal tract, the whispered speech signal tends 
to differ from normal speech in terms of formant shape and location, most noticeably in the 
F1 and F2 frequencies region, and in terms of spectral slope as well (Parmar et al. 2019). Also, 
during whispered speech the lungs need to exhale more airflow compared to normal speech 
(Wolfe, Garnier, and Smith 2009) and to compensate for this, phoneme duration tends to be 
longer than that of their normal speech counterparts (Gao et al. 2021). Such temporal 
differences, which are especially important under parallel training scenarios, are often 
addressed with pre-alignment via Dynamic Time Warping (DTW). When used during the 
training phase, however, this approach is noted for its propensity for resulting in artifacts, 
compromising both the intelligibility and the perceptual quality of the converted speech (Gao 
et al. 2021; Lian et al. 2019a). As for the spectral differences and the lack of F0, the typical 
approach consists in starting by remapping the spectral envelope from whispered to its 
normal speech counterpart, for which there are several approaches and often involves 
converting the spectral envelope into Mel cepstral features, such as Mel Frequency Cepstral 
Coefficients (MFCC). This is usually followed by predicting the F0 contour based on the original 
whispered features and/or the converted ones. Such approach is guided partly by the fact that 
while F0 is absent in the original whispered speech, a sensation of pitch has been observed in 
the literature. However, the relation between spectral envelope and F0 is rather intricate and 
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the F0 contour obtained by such methods has limited accuracy, compromising the naturalness 
of the converted normal speech (Parmar et al. 2019). Arguably, the estimation of the F0 
remains the most challenging task in whisper-to-normal speech conversion. 

 
Figure 1: Illustration of the whisper-to-normal speech typical framework pipeline 

The diagram presented in Figure 1 illustrates the typical whisper-to-normal speech conversion 
framework pipeline, as was described above. As it will be shown in Sec.4, however, how these 
subtasks are implemented and interact with each other may vary. 

3. Paper Selection 

The relevant papers were surveyed through Scopus, Web of Science and Google Scholar. Given 
the rapid evolution of the Machine Learning landscape and the aim at identifying current 
trends and challenges, only the most recently published works, namely from 2019 onwards, 
were included. Required terms either in the Title, Abstract or Keyword fields included: whisper 
OR whispered, normal OR neutral OR natural, speech OR voice OR conversion OR converting. 
In addition to the prerequisite of adopting ML approaches for at least one of the conversion 
subtasks, it was also required that the conversion systems made explicit usage of natural 
whispered speech as source domain and having synthetic normal speech as target domain. 
Hence, works aiming at producing synthetic whispered speech and/or having a different 
source domain (e.g., Text-to-Speech systems) were excluded. A total of 8 papers were 
collected via Scopus, namely Lian et al. (2019a), Patel et al. (2021), Parmar et al. (2019), 
Malaviya et al. (2020), Pang et al. (2020), Yu et al. (2019), Lian et al. (2019b), and Lian et al. 
(2020). One of these, namely Lian et al. (2020), was excluded from the survey due to the lack 
of availability of a full text version. Additionally, following the same criteria, 3 other papers 
were collected through Web of Science and/or Google Scholar, namely Niranjan et al. (2020), 
Gao et al. (2021), and Patel et al. (2019). It is also worth noting that, although beyond the 
scope of this survey, the prior research in whisper-to-normal speech conversion is largely 
covered by the background sections within the selected papers. 

4. Modelling and Training Approaches 

This section does not intend to present a detailed description of each conversion system, nor 
the architecture details behind them, which may be found via the original papers. The focus 
is put instead on the respective model and training approaches and how the key challenges of 
converting whispered-to-normal speech are being addressed. In most cases, the systems will 
be referred by names given by the respective authors (note that in two cases, an identifiable 
name was used for conveniency just for the propose of this survey). 

4.1. DNN-MCC-F0 

In Niranjan et al. (2020), inspired by the results of Deep Neural Networks in diverse visual 
applications, two distinct 5-layer DNN were trained for the spectrum features remapping and 
for the F0 estimation subtasks, respectively. The first one uses the Mel Cepstral Coefficients 
(MCC) from whisper and from normal speech, which are aligned through DTW, as to learn 
their relationship. To reflect the dynamic characteristics of the spectral envelope, the first 
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order differences of the MCC were also included. The second one uses the MCC both from 
whisper and normal speech and the F0 from the reference normal speech so to learn to predict 
the F0 of the converted speech. Parallel training was conducted with 300 utterances both in 
whisper and normal speech counterparts. The authors reported better results when also 
including MCC deltas in addition to the basic MCC values, and better F0 prediction than with a 
previously proposed Gaussian Mixed Model (GMM) based method, available in the literature. 

4.2. SEQ2SEQ 

In Lian et al. (2019a), the authors adopted the SEQ2SEQ mapping framework, firstly proposed 
by Cho et al. (2014), to map the relationship between the MFCCs of the whispered speech and 
the correspondent normal speech. An auditory attention mechanism was also adopted as to 
obtain a self-adaptive context vector that is used to adaptively estimate the current hidden 
state and output of the decoder. Through this method, the requirement of pre-alignment 
before training the parallel whisper and normal speech is avoided. Training was conducted 
through 300 parallel whisper and normal speech utterances, plus 48 parallel utterances for 
testing. The SEQ2SEQ remaps 30-dimensional MFCC vectors, that were obtained from spectral 
representations of each frame, from whisper to normal speech. Once the MFCCs of the 
estimated normal speech are obtained, these are used to train two Deep Bidirectional LSTM 
(Long Short-Term Memory), or DBLSTM, that are responsible for characterizing the 
relationship between the estimated MFCCs and the F0 of the normal speech and for estimating 
the signal aperiodic component, respectively. The authors argue that their method 
outperforms the classical DTW approach, reporting better results both in terms of naturalness 
and F0 prediction than those of alternative methods. 

4.3. AGAN-W2SC 

In Gao et al. (2021), a Generative Adversarial Network (Goodfellow et al. 2014), or GAN, is 
responsible for remapping the whispered features to the target domain of normal speech. The 
generator part of the GAN, an encoder-decoder, is implemented through a Siamese pair of 
convolutional networks. The discriminator part is composed by a single convolutional 
network. The authors argue that the system can implicitly generate the fundamental 
frequency without explicitly trying to predict it (as it is traditionally done), although they are 
vague with the details. Also, in a similar approach to the previous system, the authors argue 
that the requirement of pre-alignment before training is circumvented by an adaptive time-
alignment through the inclusion of a self-attention mechanism in the encoder. In this case, 
this is achieved by processing pivotal features and assigning weights to each region adaptively 
so to implicitly perform the time alignment. The system was trained with 800 pairs of parallel 
corpuses (plus 169 other pairs reserved for testing) from which were extracted frame-level 
Mel-spectrogram vectors. Better results were reported in terms of perceptual quality and 
intelligibility and competitive ones in terms of F0 prediction compared to DTW based methods. 

4.4. Inception-GAN vs. CNN-GAN 

In Patel et al. (2019), the authors adapted the Inception modules from Szegedy et al. (2015), 
proposing an Inception-GAN architecture, aimed at reducing computational complexity. In 
contrast with a typical CNN based GAN, also implemented as baseline for comparison 
purposes, the generator and discriminator parts of the GAN are made of stacks of 4 and 3 
inception modules, respectively, and only 1 convolutional layer each. Following this 
alternative architecture, one model was used for remapping the cepstral features (MCC) from 
the whispered to the normal speech and another one to find the prediction function from the 
converted features to the F0 of the targeted normal speech. This was followed by smoothing 
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the voiced regions in post-processing. The authors used the traditional GAN training approach, 
conducting parallel training with 1164 utterances, both in whispered and normal speech 
modes, plus 35 additional utterances for testing. Alignment is only mentioned during the 
evaluation phase, which was carried out via DTW, as to measure the F0 prediction accuracy. 
Better results were reported in terms of naturalness for the Inception based architecture 
compared to the CNN based baseline with speaker-specific conversions, both for a male and 
a female speaker. 

4.5. CycleGAN vs. DiscoGAN 

In Parmar et al. (2019), the authors adopted both the CycleGAN (Zhu et al. 2017) and the 
DiscoGAN (Kim et al. 2017) architectures as to evaluate their effectiveness for whisper-to-
normal speech conversion. These architectures, originally introduced independently for 
unpaired image-to-image translation and since then adapted for audio conversion as well, 
although following the same modelling and training approach, differ with each other w.r.t the 
respective objective functions. In both approaches, one model was implemented with the 
purpose of remapping the cepstral features from the whispered to the normal speech and 
another one to map from the converted cepstral features (MCC) to the corresponding F0 of 
normal speech, which was followed once again by smoothing the voiced regions in post-
processing. The two models are trained sequentially in this order. It is also indicated that the 
voiced-unvoiced decision (i.e., which regions of the reconstructed signal are to be voiced) is 
implemented in both architectures through the same DNN-based model, without providing 
further details about this module. According to the authors, 388 parallel utterances 
corresponding to whispered and normal speech were used for training, plus 35 utterances for 
testing. Alignment through DTW is also only mentioned during testing phase, in the context 
of measuring F0 accuracy, implying that there was no pre-alignment before training. According 
to the authors, both architectures outperformed the traditional GANs in terms of naturalness. 

4.6. CinC-GAN 

The authors argue that the previously mentioned CycleGAN architecture led to additional non-
linear noise in the predicted F0, due to this prediction being highly dependent on the pre-
trained MCC mapping (v.s., CycleGAN sequential training). In Patel et al. (2021), to improve 
the effectiveness of F0 prediction without sacrificing the accuracy of the MCC mapping, a new 
architecture was proposed that instead of relying on two separate models that are trained 
sequentially, relies on a single model containing an inner CycleGAN for MCC mapping and an 
outer CycleGAN for F0 prediction, hence jointly training this sub-networks. Also, as pointed 
out by the authors, non-parallel training was conducted in all experiments which means that 
there was no need for time-alignment. These experiments included speaker-specific, gender-
specific, and both seen and unseen speakers, reporting better results compared to the 
CycleGAN baseline, both in terms of naturalness and F0 prediction. The authors highlighted 
the better performance obtained by the new architecture with unseen speakers. 

4.7. Mspec-Net 

In Malaviya et al. (2020), a multi-domain speech conversion system is proposed, capable of 
converting both from Non-Audible Murmur (NAM) and from whispered speech to normal 
speech, through three domain-specific AutoEncoders (AEs). These AEs are used to obtain an 
internal representation of features, which are known as latent representations. During 
training, the aim is to learn a common latent space of the input speech from all the three 
domains. During conversion, only the source encoder and the target decoder are used. Like in 
the three previous systems, for the spectral remapping, MCC were extracted from the source 
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domain signals and remapped to the target domain of normal speech. For the F0 prediction 
task, however, the previously mentioned CycleGAN was used instead. Prior to training, DTW 
was used to align the normal and whispered speech. NAM and whispered speech were 
recorded simultaneously, hence no further alignment was needed for this pair. With respect 
to whisper-to-normal conversion, the authors reported better results in terms of naturalness 
with Mspec-Net compared to the DiscoGAN baseline. 

4.8. Meta-BLSTM 

In Yu et al. (2019), a RNN (Recurrent Neural Network) based Bi-directional LSTM (BLSTM) 
approach is used for the remapping tasks. BLSTM based converters are known to produce high 
quality conversions in terms of naturalness but tend to suffer from model complexity and 
inference cost (Nisha Meenakshi and Ghosh 2018). Aiming at reducing complexity, the authors 
proposed a meta-network with non-shared weights for the LSTM memory block, reducing the 
number of parameters compared to the standard BLSTM. In their approach, three models 
were trained to map the relationship between the MCC extracted from the whispered speech 
and the MCC, the aperiodic component and the F0 of the converted normal speech, 
respectively. Parallel training was conducted with 300 pre-aligned utterances in whisper and 
normal speech, plus 37 utterances for testing. Pre-alignment was implemented via DTW. The 
authors argue that the novel Meta-BSLTM achieved state-of-the-art results, comparable and 
slightly better than the baseline BLSTM, while drastically reducing the training time. 

4.9. LSTM-SP+ 

In Pang et al. (2020), a RNN based BLSTM is used again, following the typical approach of 
remapping the spectral features from the whisper speech to the target normal speech, 
followed by F0 estimation based on the obtained converted features. However, aiming at 
improving F0 prediction, an additional 76-dimensional input is used through a feature fusing 
process that includes both MFCCs and prosody related features. According to the authors, 
these prosody related features include formants information, several energy related features 
and the short-term average zero-crossing rate. The system was trained on a frame-by-frame 
basis using a parallel corpus of 348 utterances in whispered and corresponding normal speech. 
The authors reported improved speech quality and better F0 prediction when those 
supplemental fused features were used, compared to the baseline. 

4.10. E2E-W2NSC 

The speech conversion is implemented in Niranjan et al. (2020) having machine intelligibility 
in mind. Unlike the previously mentioned works, this conversion relies on an end-to-end 
system: a custom DNN comprising an encoder and a decoder, with similar architectures, both 
with self-attention mechanisms in addiction to feedforward fully connected layers, trained as 
a whole. Since the actual objective in this case is to improve ASR, which is typically trained on 
and optimized for normal speech recognition, the lack of F0 in the original whispered speech 
is not addressed during conversion. The authors focused their attention on the formant 
location aspect instead, namely from F1 to F4. The network uses frame-wise acoustic features, 
either MCC or smoothed spectral features as input, with both alternatives being evaluated by 
the authors, and outputs the correspondent features for the targeted natural speech. The 
proposed system can use both parallel and non-parallel data. For the parallel training, which 
requires matched time-duration segments, trimming was conducted, with additional time-
stretching to account for the remaining marginal differences. No other alignment procedure 
is mentioned. The authors reported better results with the converted speech compared to the 
ASR with the original whispered speech in a variety of experiments. The models were also pre-
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trained with larger amounts of non-parallel data, as to address the sparsity problem of 
whispered/normal speech parallel data, which was found to improve system performance. 

5. Datasets and Vocoders 

This section provides a brief description of the datasets and vocoders used in the papers 
included in the present survey. 

5.1. Datasets 

Some version of a dataset derived from the TIMIT corpus was used in all cases included here. 
Specifically, whispered TIMIT (wTimit)1 was used by Niranjan et al. (2020), Patel et al. (2021), 
Parmar et al. (2019), and Patel et al. (2019), while CSTR-NAM-TIMIT Plus was used by Gao et 
al. (2021), Lian et al. (2019a), Malaviya et al. (2020), Pang et al. (2020), Yu et al. (2019), and 
Lian et al. (2019b). The wTIMIT dataset uses the prompts in TIMIT, a well-known corpus often 
used for benchmarking in speech recognition, including 450 phonetically balanced sentences 
both in normal and whispered speech. The corpus includes Singaporean English and North 
American English accents. The CSTR-NAM-TIMIT Plus2 dataset is another TIMIT derived corpus 
with both whispered and NAM recordings, including 421 sentences selected from newspaper 
text, 460 sentences from TIMIT and 18 isolated words. Some of the papers expanded the 
dataset with custom recordings to better suit the specific requirements of their systems. Also, 
in Niranjan et al. (2020) SpeechOcean was combined for training with wTIMIT in addition to 
custom recordings, and CHAINS3 and LibriSpeech4 were also used for testing and additional 
experiments. 

5.2. Vocoders 

A parametric vocoder was used in all cases presented in this survey, either for feature 
extraction (analysis) and/or signal reconstruction (synthesis). STRAIGHT5 was used by Gao et 
al. (2021), Lian et al. (2019a), Pang et al. (2020), Yu et al. (2019), and Lian et al. (2019b), 
WORLD6 is used by Niranjan et al. (2020) and AHOCODER7 is used by Malaviya et al. (2020), 
Parmar et al. (2019), Patel et al. (2021), and Patel et al. (2019). A neural vocoder, WaveNet, 
for higher quality synthesis, is proposed in Parmar et al. (2019) and Patel et al. (2019), but only 
as future work. STRAIGHT is a widely used parametric vocoder, available in several versions 
and with analysis and synthesis capabilities, that decomposes the speech signal and extracts 
the F0 contour, a frame based spectral representation and the aperiodic component allowing 
for their manipulation and posterior signal reconstruction. WORLD is a publicly available 
vocoder that follows the same architecture and extracts those same components, differing 
only on the algorithmic implementation. AHOCODER on the other hand, while having similar 
capabilities, extracts different features, namely the log(F0), a cepstral representation of the 
spectral envelope and the maximum voiced frequency. Nevertheless, all these vocoders are 
similarly adequate for speech manipulation or voice conversion. 

                                                      

 

 

 
1 http://www.isle.illinois.edu/sst/data/wTIMIT 
2 https://datashare.ed.ac.uk/handle/10283/3849 
3 https://chains.ucd.ie 
4 https://www.openslr.org/12 
5 https://github.com/HidekiKawahara/legacy_STRAIGHT 
6 https://github.com/mmorise/World 
7 https://aholab.ehu.eus/ahocoder/info.html 
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6. Evaluation 

This section discusses the evaluation metrics, both of objective and subjective natures, that 
were used within the surveyed papers. Code and demo samples availability is also discussed. 

6.1. Objective metrics 

The most used objective metric is the Mel Cepstral Distortion (either referred as CD or MCD), 
which was included in all papers except for Niranjan et al. (2020) and Gao et al. (2021). The 
MCD is given by: 

𝑀𝐶𝐷 =
10

𝑙𝑜𝑔10
√2 ∑(𝐶𝑑 − 𝐶𝑑

′ )2

𝐷

𝑑=1

  (1) 

where Cd and C’d represent the dth element of the cepstral coefficients feature of the 
reference and the converted normal speech, respectively, and D represents the dimension of 
the cepstral coefficient feature. A higher MCD value indicates a greater difference between 
the converted and the reference speech (lower is better). Additionally, Short-Time Objective 
Intelligibility (STOI) was also used in Lian et al. (2019a), Pang et al. (2020), Yu et al. (2019), and 
Lian et al. (2019b) and Perceptual Evaluation of Speech Quality was also used in Lian et al. 
(2019a), Pang et al. (2020), and Yu et al. (2019). Finally, the two remaining papers used entirely 
different metrics from the rest. In Gao et al. (2021), Single Sided Speech Quality Assessment 
(P.563) was used instead. In Niranjan et al. (2020), which is automatic speech recognition 
oriented, Word Error Rate (WER) and Bilingual Evaluation Understudy (BLEU) were the 
objective metrics implemented to evaluate system performance. This paper also proposed 
and implemented Formant Divergence Metric (FDM) to compare formant distribution 
between converted and natural speech. 

With respect to the accuracy of the F0 estimation, Root Mean Square Error (RMSE) is the 
widely adopted metric, which is given by: 

𝑅𝑀𝑆𝐸(𝐹0) = √∑(𝐹𝑜
𝐶

𝑖
−  𝐹𝑜

𝑅
𝑖
)

2
𝐾

𝑖=1

  (2) 

where F0
C and F0

R are the fundamental frequencies of each of the K time-aligned frames of the 
converted and the reference normal speech, respectively. This metric was adopted in Gao et 
al. (2021) and Lian et al. (2019a) and in all the AHOCODER based works, namely Parmar et al. 
(2019), Malaviya et al. (2020), Patel et al. (2021), and Patel et al. (2019), in which cases the 
RMSE was calculated over the log(F0) instead. Additionally, in Patel et al. (2021), the Kullback-
Leibler Divergence (KLD) and Jensen-Shannon Divergence (JSD) between predicted and 
original F0 for speaker-specific tasks were also considered. In Niranjan et al. (2020), F0 is not 
estimated and in Pang et al. (2020), Yu et al. (2019), and Lian et al. (2019b), while the F0 

estimation is discussed and accompanied with illustrations of the F0 curve, no objective metric 
is presented. 

6.2. Subjective metrics 

While all papers supported their results with at least one objective metric, only a few provided 
a subjective evaluation, namely: Lian et al. (2019a), Parmar et al. (2019), Patel et al. (2021), 
Malaviya et al. (2020), and Patel et al. (2019). The lack of a subjective evaluation is justified in 
Niranjan et al. (2020) since the VC was implemented in the context of ASR and having machine 
intelligibility in mind. Subjective evaluations, since carried by human subjects, tend to be 
costly and time consuming compared to objective evaluations, but they are of the most 
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importance every time humans are intended as the end user of the system. Even more so 
because humans not always agree with objective results and systems that perform better with 
such metrics may introduce artifacts that are rather disruptive from a perceptual standpoint, 
as noticed by human subjects. So, in such a context, without a subjective evaluation, it will 
remain unclear if there is a real advantage even if the system performs better with certain 
objective metrics. Regarding the papers that included subjective evaluation metrics, Mean 
Opinion Score (MOS) was used in Lian et al. (2019a), Patel et al. (2021), Malaviya et al. (2020), 
and Patel et al. (2019) to assess the naturalness of the converted speech, with the number of 
subjects ranging from 16 up to 28. An ABX preference test between the proposed and a 
reference system was also conducted in Lian et al. (2019a) and Parmar et al. (2019). 

System Training MCD 
(lower is better) 

MOS 
(higher is better) 

SEQ2SEQ 
CinC-GAN 
CycleGAN 
DiscoGAN 
Mspec-Net 

Inception-GAN 
CNN-GAN 

BLSTM-SP+ 
Meta-BLSTM 

P 
NP 

P/NP 
P/NP 

P 
P 
P 
P 
P 

2,8 
6,3 
6,6 
6,6 
3,0 
6,7 
7,2 
4,9 
4,8 

3,6 
3,7 

- 
- 

4,5 
2,8 
2,4 

- 
- 

DNN-MCC-F0 P 5,8 - 

Table 1: Summary presenting the most used objective and subjective metrics, MCD 
and MOS respectively, where available. The training approach, parallel (P) or non-
parallel (NP) is also indicated. These results are not intended as providing a direct 

comparison between the included systems, tested under different conditions 

Table 1 summarizes the most used objective and subjective metrics, respectively MCD and 
MOS, where available. In most of these cases, the systems were tested under different 
conditions and evaluated by different subjects. Hence, the table is not intended as a direct 
comparison between these systems, but merely as indicative. For convenience, results were 
averaged down in some of the cases (e.g., if a result was provided for male speakers and 
another for female speakers in the original paper). 

6.3. Code and demo samples availability 

While not providing an evaluation by itself, demo samples are useful for any interested 
reviewer or fellow researcher as an indication of the capabilities and level of quality attained 
by each conversion system. Among the papers included in this survey, however, only two 
provide a webpage with demo samples, namely Gao et al. (2021) and Malaviya et al. (2020). 
Note that several other systems (some of which are covered by this survey) were also included 
in those two sets, albeit not always by their own original authors. While conducting subjective 
tests is a consuming task, providing demos that would help to put the objective results in 
context, would be a relatively simple task and in this author opinion, should be encouraged. 
Code is also made available via GitHub in Niranjan et al. (2020), Gao et al. (2021), Malaviya et 
al. (2020), allowing for the possibility of replication or other experiments for a limited number 
of the surveyed papers. 

7. Conclusions 

This survey researched the most recent literature regarding ML based whisper-to-normal 
speech conversion. A total of 10 papers were included, discussing their modelling and training 
approaches. These include GAN based model approaches in 4 papers, one AE based model 
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and two BLSTM based models, among other custom DNN designs. Most of these 
implementations relied in parallel training, making use, and eventually expanding upon one 
of two publicly available TIMIT derived datasets, namely wTIMIT and CSTR-NAM-TIMIT Plus. 
One paper only focused specifically on non-parallel training and another one used non-parallel 
pre-training followed by fine-tuning with parallel data, as a data augmentation strategy. 
Regarding time-alignment, only 3 papers indicated applying pre-alignment via DTW, while two 
other papers reported using DTW based time-alignment in the testing phase in order to 
measure F0 estimation accuracy. Also, all papers included made use of a parametric vocoder 
to extract the basic whisper and normal speech features and/or reconstructing the converted 
speech with one paper indicating plans of future application of a neural vocoder. 

Regarding the reported results, all papers made use of at least one objective metric to support 
their claims, most often measuring the Mel Cepstral Distortion between the features of the 
converted speech and those of the reference normal speech, as well as RMSE for F0 prediction 
accuracy. However, only 5 papers included subjective tests: 4 papers included MOS based 
perceptual tests to assess the naturalness of the converted speech and ABS preference tests 
between the proposed a reference system were conducted in 2 papers (note that one paper 
included both). Although most papers reported F0 estimation accuracy improvements through 
the proposed methods compared to the baseline, authors tend treat the F0 estimation as an 
open problem and going as far as admitting that better F0 estimation is still required. Also, the 
number of papers that focused on non-parallel learning is rather limited. Whenever parallel 
learning is required, it represents an important limitation, tending to be costly and time 
consuming, hence not being an attractive and practical solution for a system intended for real 
world usage. The availability of demo samples or code, as to better assess the proposed 
systems capabilities, was shown to be limited among the surveyed papers as well. 
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