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Abstract 
The high demand for concrete in civil construction promotes investment by 
researchers and builders to find methodologies that improve performance, costs and 
reduced environmental degradation. What justifies the large consumption of 
concrete is the possibility of improving its characteristics according to use. Self-
compacting concrete offers a mixture with high flowability, compaction and good 
mechanical properties. Statistics tools can be used for better optimization of 
mixtures, such as the Design of Experiments (DoE). Therefore, the objective of this 
research was to optimize an experimental dataset of high strength self-compacting 
mortars using the Response Surface Methodology (RSM) for a Central Composite 
Design (CCD). The results showed a strong correlation between the D-Flow and T-
funnel response factors, when compared with CS14h and CS28d models. The input 
variable w/c was the most significant. Numerical optimization showed good accuracy 
and compliance for low cost and environmental impact, maintaining high 
performance in fresh and hardened properties. 
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Introduction 

The role that concrete has in buildings and infrastructure constructions around the world is 
unquestionable, due to the versatility of application. The materials used to make concrete, 
such as cement, fine and coarse aggregate, are mostly generated from natural resources, 
which intensifies environmental exploitation (Ali et al. 2023).  

In the 1980s in Japan, with a high growth in civil construction and the lack of skilled labor, 
buildings with concrete failures were frequent. These problems occurred mainly in the 
consolidation process, due to the characteristics of local structures, such as the slenderness 
of the pieces and the high rates of reinforcement, in view of a structural design capable of 
reducing high buckling and bending stresses caused by frequent earthquakes (Nunes 2001; 
Moraes 2010). 

Local researchers and builders developed methodologies that would improve the quality of 
concrete, and a good configuration was to dismiss the consolidation process, promoting flow 
without an external force (Okamura 1997).  
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Therefore, self-compacting concrete is a mixture capable of flowing and compacting without 
the need for vibration, allowing the filling of formwork and reinforced structures by its own 
weight, without blockages or segregation. Unlike self-compacting concrete, traditional 
concrete needs to be vibrated to shape and fill the voids in the formwork (Day, R., Holton, I., 
Domone, P., & Bartos 2005). Brazilian standards NBR 15823 from 1 to 6 (2017) and European 
standards EN 206-1 (2007), NP EN 206-9 (2010) and NP EN 12350-8 to 12 (2010) are similar in 
terms of concept, classification and use of self-compacting concrete, except for the test 
methodology for determining segregation resistance. 

Technological advances and the emergence of chemical additives, such as plasticizers and 
superplasticizers, which guarantee the fluidity of the mixture, the application of self-
compacting concrete has improved even further (Aïtcin 2000).  

To meet its properties, the dosage and choice of materials for the mixture must attend the 
following requirements: use a greater proportion of materials with fine-grained granulometry 
and cement; increasing viscosity, stability, filling voids and strength, the latter due to cement; 
and decrease the amount of coarse aggregates, to reduce the risk of segregation (Okamura, 
H.; Ouchi 2003). 

However, this methodology increases the costs of the mixture, in addition to increasing 
properties such as shrinkage and cracking. Therefore, mixes with lower consumption of paste 
and fine aggregates should be proposed, so that the performance of the concrete is not 
compromised, mainly in terms of its rheological properties (Moraes 2010). Thus, it is necessary 
that studies be carried out to propose models that optimize the applicability of these mixtures, 
in order to determine the best compositions for a given purpose. 

Currently, there is an increase in demand for complex concrete structures with varied 
geometries, requiring fluid and homogeneous concrete. Self-compacting concrete meets 
these requirements. However, care must be taken to characterize its properties in the fresh 
state. In addition, performance in the hardened state is directly related to the adjustments 
made to obtain the desired standards in the fresh state (Nuruzzaman et al. 2023; Zerbino et 
al. 2009). 

An important statistical tool that can be applied to optimize the characterization of materials 
is the Design of Experiments (DoE). It is essential that this planning is done appropriately, that 
result found is not just data, making it possible to infer conclusions by the investigator (Neto, 
B. de B.; Scarminio, I. S.; Bruns 2001). There are countless benefits of using the DoE, such as 
reducing the number of experiments, the correlation between the addressed parameters, the 
definition of an optimal response within the investigated region and to building an empirical 
model with the parameters used and the responses found (Upasani, R.; Banga, S.; Ajay 2004).  

In the 1950s, an optimization technique based on factorial planes was created, applied when 
one wants to improve a response that depends on several factors, called Response Surface 
Methodology (RSM). It is currently used on a large scale, mainly in industrial processes (Box, 
G. E. P.; Wilson 1951; Box, G. E. P.; Hunzter, W. G.; Hunter 1978).  

RSM aims to reach an excellent surface region, for what it repeats the modeling and 
displacement until it is reached. The models are usually fits of simple models, largely linear or 
quadratic, associated with factorial designs (Neto, B. de B.; Scarminio, I. S.; Bruns 2001).  

Statistical models and optimization techniques for civil construction materials have been 
applied in several researches in recent years, such as the following works: 

• In the replacement of coarse aggregates by pumice stone in concrete using RSM, 
analyzing the fresh and hardened properties, which resulted in a quadratic model and 
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an analysis of variance (ANOVA) with coefficient of determination (R²) above 99% and 
a fit error below 0.05 (<0.0001), confirming a high accuracy of the model (Ali et al. 
2023); 

• In the application of foundry sand waste as a partial replacement of fine aggregate, 
using Design-Expert software for RSM and CCD tool for optimizing fresh and hardened 
properties. The fine aggregate was replaced at 0%, 10%, 20%, 30% and 40%. The 
performance at 20% was the best for mechanical properties, and 30% for fresh 
properties. The coefficient of determination (R²) ranged from 0.987 to 0.995, which 
corresponds to a high significance in the model. Thus, foundry sand is indicated to 
replace up to 20% of fine aggregate for conventional concrete and up to 30% for non-
structural concrete, contributing to sustainable development (Ali et al. 2022); 

• RSM to analyze the influence on the fresh and hardened properties of cementitious 
pastes when ordinary cement is replaced by irradiated polyethylene terephthalate 
(PET) waste and silica fume. The ANOVA models showed an error of less than 5%, 
allowing a good relationship between theoretical and experimental results (Khan et al. 
2021); 

• The use of RSM and sensitivity analysis to improve the heat transfer process of 
lightweight concrete hollow bricks. Conductivity, emissivity and recess size were used 
as input variables, and thermal transmittance as response variable. Finally, an 
optimized model based on RSM analysis was exposed, developing a quadratic 
polynomial model that solves nonlinear thermal problems. ANOVA ensured that the 
applied methodology was adequate for optimization (Del Coz Diaz et al. 2014); 

• In the application of an RSM capable of predicting the workability of ultra-high 
performance self-compacting concrete reinforced with hybrid steel fibers. The study 
enabled a numerical optimization capable of finding a mixture with the highest flexural 
strength and the lowest amount of steel fibers (1.75% of microfiber volume) (Ghafari, 
Costa, and Júlio 2014). 

In addition to the studies discussed above, in the last 15 years, several other works in planning 
experiments with civil construction materials have been carried out, in order to find the best 
optimization either by performance or sustainability parameters (Mohammed et al. 2012; 
Nunes et al. 2013; Keleştemur et al. 2014; Ferdosian and Camões 2017; Mermerdaş et al. 
2017; Zahid et al. 2018; Matos et al. 2018; Imran Khan et al. 2020; Al Salaheen, M.; Alaloul, 
W.S.; Malkawi, A.B.; de Brito, J.; Alzubi, K.M.; Al-Sabaeei, A.M.; Alnarabiji 2022; Shi et al. 2022; 
Anurag and Singh 2022; Waqar et al. 2023).  

Therefore, the objective of this research is to optimize a set of experimental data of self-
compacting high strength mortars, through statistical analysis and model adjustments, using 
the response surface methodology (RSM) for a central composite design (CCD). This 
methodology allows evaluating the statistical models developed by analysis of variance 
(ANOVA).  

In the next topics, the database applied and how it was obtained (Maia 2022), and the criteria 
established for performance, adjustments and adaptations of the models were presented. 

1. Experimental Program 

1.1. Experimental Database 

The research consists in evaluating 30 mixtures of high resistance mortar with self-compacting 
properties. The dataset was from a published study (Maia 2022). In this study, 4 independent 
quantitative variables were considered, namely: w/c = ratio between water and cement; Sp/p 
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= ratio between superplasticizer and powder; w/p = proportion between water and powder; 
and s/m = ratio between sand and mortar. 

For the central composite design of 30 compositions, a factorial design with 24 (four factors 
on two levels) treatment combinations, 8 axial and 6 central runs was defined to evaluate the 
experimental error. The independent variables were evaluated at the following levels: -∞, -1, 
0, +1, +∞, according to Table 1. The value of ∞ was equal to 2 for a rotational design, where 

∞ is equal to 𝑛𝐹
1/4 and 𝑛𝐹 correspond to the number of points in the factorial part of the 

design. 

Input Variables -2 -1 0 +1 +2 

𝑋1: w/c 0.78741 0.84110 0.89478 0.94847 1.00216 

𝑋2: Sp/p 0.02069 0.02210 0.02351 0.02492 0.02633 

𝑋3: w/p 0.46929 0.50129 0.53328 0.56528 0.59728 

𝑋4: s/m 0.42240 0.45120 0.48000 0.50880 0.53760 

Table 1: Equivalence of coded and real values. 

Response variables were considered: flow diameter (D-flow), time funnel (T-funnel), 
compressive strength in 24 hours (CS24h), and compressive strength at 28 days (CS28d). Table 
2 indicates the response variables, units of measurement and methodology or technical 
specification for carrying out the tests in laboratory: 

Response Variables Unit Methodology/Standard 

𝑌1: D-flow mm Okamura & Ouchi (Okamura, H.; Ouchi 2003) 

𝑌2: T-funnel s Okamura & Ouchi (Okamura, H.; Ouchi 2003) 

𝑌1: CS24h MPa EN 196-1 (EN 2016) 

𝑌1: CS28d MPa EN 196-1 (EN 2016) 

Table 2: Response variables. 

Table 3 presents the coded input parameters and results referring to the response variables 
obtained by Maia (Maia 2022): (i) D-Flow, being an average of two orthogonal distances from 
the slump test; (ii) T-Funnel; (iii) CS24h, being an average of six compressive strength values 
at the age of 24 hours; and (iv) CS28d, being an average of four compressive strength values 
at the age of 28 days. 

Std Run 
Space 
Type 

Coded values Results 

𝑿𝟏: 
w/c 

𝑿𝟐: 
Sp/p 

𝑿𝟑: 
w/p 

𝑿𝟒: 
s/m 

𝒀𝟏: D-
Flow 
(mm) 

𝒀𝟐: T-
funnel 

𝒀𝟑: CS24h 𝒀𝟒: CS28d 

1 4 Factorial -1 -1 -1 -1 331.0 30.50 59.49068 108.49110 

2 14 Factorial 1 -1 -1 -1 341.0 17.69 51.63669 106.14450 

3 8 Factorial -1 1 -1 -1 332.5 27.29 60.86560 110.62260 

4 21 Factorial 1 1 -1 -1 348.0 16.25 52.16580 104.86770 

5 25 Factorial -1 -1 1 -1 340.0 18.34 54.52573 106.50510 

6 10 Factorial 1 -1 1 -1 367.0 11.45 50.87757 106.77540 

7 28 Factorial -1 1 1 -1 334.5 27.50 52.87920 107.50710 

8 5 Factorial 1 1 1 -1 364.0 16.13 59.57883 111.65390 

9 18 Factorial -1 -1 -1 1 305.5 60.25 54.63112 101.26080 

10 22 Factorial 1 -1 -1 1 314.5 35.50 49.99811 97.89542 

11 20 Factorial -1 1 -1 1 376.0 12.07 52.30638 107.37600 

12 23 Factorial 1 1 -1 1 318.0 34.03 52.36447 102.44590 

13 15 Factorial -1 -1 1 1 317.5 32.23 55.42865 104.20690 
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14 30 Factorial 1 -1 1 1 334.5 19.71 53.76437 102.53980 

15 19 Factorial -1 1 1 1 331.0 26.37 56.56464 103.77990 

16 12 Factorial 1 1 1 1 331.5 22.41 52.19865 106.42200 

17 11 Axial -2 0 0 0 312.5 42.10 63.96522 107.72540 

18 26 Axial 2 0 0 0 343.5 19.82 48.29289 98.64815 

19 24 Axial 0 -2 0 0 327.0 26.47 56.23838 106.40360 

20 3 Axial 0 2 0 0 332.5 22.85 55.34302 104.70170 

21 6 Axial 0 0 -2 0 312.5 64.50 52.07207 101.48550 

22 1 Axial 0 0 2 0 357.5 15.18 55.76997 103.74990 

23 27 Axial 0 0 0 -2 366.0 14.25 53.09370 102.38170 

24 7 Axial 0 0 0 2 289.0 66.78 54.54092 101.05290 

25 13 Center 0 0 0 0 352.0 18.28 55.74517 109.21820 

26 9 Center 0 0 0 0 316.0 43.09 59.14607 103.12800 

27 17 Center 0 0 0 0 326.5 35.44 59.99336 110.03500 

28 29 Center 0 0 0 0 354.0 19.59 54.67565 106.64290 

29 2 Center 0 0 0 0 331.5 23.00 56.80669 107.96340 

30 16 Center 0 0 0 0 338.0 22.87 54.41940 107.09920 

Table 3: Encoded values of input parameters and raw readings of results, 
performed by Maia (2022). 

1.2. Development of the RSM model 

For planning this experiment, the commercial software Design-Expert (version 13.0.13.0 64-
bit, serial number: 0964-0841-3719-3394) was used, in which the polynomial regression 
model was developed. Central Composite Design (CCD) is the most practical Response Surface 
Methodology (RSM) as it includes three design points, as shown in Figure 1: (i) factorial points 
represented by two levels, with coded values of +1 and -1 , with all possible combinations (2𝑘 
for a k-factor CCD); (ii) points present in the center of each face of the cube, called axial points 
(star points), located at a distance of -∞ and +∞ (2*k); and, (iii) for central points, with zero 
value for the variables, located in the center of the cube (Stat-Ease 2014). 

 

Figure 1: Design of factorial, axial and central points in the CCD (Stat-Ease 2014). 

According to the design points and the experimental results, a second-order polynomial model 
can be related, according to the Formula 1 below: 
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where Y is the response variable, 𝛽0 is the model intercept, 𝛽𝑖 represents the linear 
coefficients, 𝛽𝑖𝑖 is the variable interaction coefficients, 𝑋𝑖 and 𝑋𝑗 are the design variables 

considered, and ε is the fit error. 

The models generated by the Design-Expert software allowed evaluating the following factors 
that were discussed in the next topics. 

2. Discussion 

2.1. Initial Considerations 

Table 4 shows the statistical responses for the variables D-Flow, T-funnel, CS24h and CS28d of 
the 30 mixtures. The values found were: minimum, maximum, mean, standard deviation and 
coefficient of variation. All data found presented good adjustments and homogeneity, except 
for the T-funnel, which has a coefficient of variation (CV) of 52.32%. 

Response Name Units Minimum Maximum Mean Std. Dev. CV (%) 

𝑌1 d-flow mm 289.00 376.00 334.83 19.96 5.96 

𝑌2 t-funnel s 11.45 66.78 28.06 14.68 52.32 

𝑌3 CS24h MPa 48.29 63.96 54.98 3.50 6.37 

𝑌4 CS28d MPa 97.89 111.65 105.29 3.39 3.22 

Table 4: Statistical responses of the 30 CCD points. 

Before presenting the response modeling in RSM, it is interesting to evaluate the correlation 
of the response variables through simple scatterplots. Combinations between D-flow (𝑌1), T-
funnel (𝑌2), CS24h (𝑌3) and CS28d (𝑌4) variables were performed in order to find the highest 
correlations between them. 

The best correlation result is shown in Figure 2 (a) and (b), which are the T-funnel versus D-
Flow and D-Flow versus T-funnel graphs, respectively. An exponential graphical trend is 
observed, with a strong downward correlation of -0.871. 

 
Figure 2: Correlation chart between (a) T-Funnel versus D-Flow and (b) D-Flow 

versus T-Funnel. 

Figure 2 (a) and (b) corroborates with the literature referring to self-compacting concrete in 
relation to these two types of tests: T-Funnel and D-Flow are experiments to find properties 
in the fresh state for a free flow category of concrete, with the characteristic of filling a 
formwork under its own weight and segregation resistance (stability). In the placement stage 
of self-compacting concrete, a difference in flow and self-compacting capacity is observed, a 
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characteristic that justifies the replacement of conventional concrete by self-compacting in 
certain uses (Calado et al. 2015). 

Figure 3 (a) and (b) shows the correlation between CS24h versus CS28d and CS28d versus 
CS24h, respectively. There is a moderate upward correlation trend of 0.597 with upward 
straight line trend. The other interactions between the response parameters have a weak 
correlation and were not presented in this discussion. Therefore, for an initial analysis, it is 
concluded that the relevant interactions occur between the properties in the fresh state (T-
funnel and D-flow) and in the hardened state (CS24h and CS28d). 

 

Figure 3: Correlation chart between (a) CS24h versus CS28d and (b)  

CS2.d versus CS24h. 

2.2. D-flow Model 

To define the polynomial model, important statistics were compared through regression 
analysis, such as “Square-R”, “p-value”, “f-value”, “Sum of Squares”, “standard deviation (sd)” 
and “PRESS”. Initially, the best model had a low value of adjusted R² (0.3534) and predicted 
R² (0.1765). In addition to being far from ideal values (close to 1.0), the relationship between 
the two variables was close to 20%. Therefore, it was evaluated through the normal plot of 
residuals, which is considered the most important diagnostic graph (Figure 4) that the point 
Std 11 Run 20 was misaligned with the others and was ignored in the model, thus performing 
a new analysis. 

 

Figure 4: Plot normal probability of residuals for the D-flow model before 
adjustments. 
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In the subsequent analysis, the linear model was the one with the best result. In ANOVA, as 
observed in Table 5, it affirms the choice of the linear model, which presents a low “p-value” 
(<0.0001), below 0.05; and the “F-value” is 23.55, implying that the model is significant. 

In order of relevance, factors 𝑋4 (s/m), 𝑋3 (w/p) and 𝑋1 (w/c) are the significant terms of the 
model, and dominant in relation to 𝑋2 (Sp/p) factor, which can be proven by the sum of 
squares values. The Lack of Fit presented a high “p-value” (0.9938) and an “f-value” of 0.2157 
(above 0.05), which indicates that the lack of fit is not significant in relation to the pure error. 

Source Sum of Squares Mean Square F-value p-value Significance 

Model 7811.22 1952.80 23.55 < 0.0001 significant 

w/c 1386.15 1386.15 16.71 0.0004  

Sp/p 17.33 17.33 0.21 0.6517  

w/p 1883.58 1883.58 22.71 < 0.0001  

s/m 5078.17 5078.17 61.23 < 0.0001  

Residual 1990.32 82.93    

Lack of Fit 896.49 47.18 0.2157 0.9938 not significant 

Pure Error 1093.83 218.77    

Cor Total 9801.53     

Table 5: ANOVA for D-Flow response. 

Table 6 presents the statistical values to increase the ANOVA. It is verified that the relationship 
between the adjusted R² and the predicted R² is within the 20% limit and with its maximum 
values for the linear model. 

The term “Adeq Precision” measures the relationship between the signal and the fluid. Values 
above 4 are ideal. As its value is 17.2817, it suggests an adequate signal, again indicating that 
the model can be used to navigate the design space. 

Std. Dev. Mean C.V.% R² Ajusted R² Predicted R² Adeq Precision 

9.11 333.41 2.73 0.7969 0.7631 0.7390 17.2817 

Table 6: Fit statistics for D-Flow. 

The factor coefficients coded D-flow are presented in Table 7.The input variables w/c, Sp/p, 
w/p and s/m are considered significant values and are multicollinear, because it present 
correlations above 1. 

Table 7: Coefficients for D-flow coded factors. 

After adjusting the model, the normal probability graph of residuals was presented as can be 
observed in Figure 5 (a), which presents a better fit than the previous configuration, with the 
points close to the line, however, it appears to have a S shape, ideally linear or normal. For 
the residual versus run graph in Figure 5 (b), it was verified that the values obey the interval 
(± 3.54581) and have random dispersion, with no upward or downward trend, which is 
considered ideal. 

Factor Coefficient Estimate Standard Error 95% CI Low 95% CI High VIF 

Intercept 332.35 1.70 328.84 335.85  

w/c 7.80 1.91 3.86 11.73 1.01 

Sp/p 0.87 1.91 -3.06 4.81 1.01 

w/p 9.09 1.91 5.15 13.02 1.01 

s/m -14.92 1.91 -18.86 -10.98 1.01 
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The residual versus predicted graph, as shown in Figure 5 (c), also has random dispersion and 
the points obey the established interval (± 3.54581). And finally, Figure 5 (d) shows the predict 
versus actual graph, which demonstrates that the data are well correlated with the predicted 
values. In addition, the graph shows the location of the disregarded point (Std 11, Run 20) in 
the RSM. 

 
Figure 5: (a) Normal versus Residuals D-flow plot; (b) Residuals versus Run D-flow 
plot; (c) Residuals versus Predicted D-flow plot; e, (d)  Predicted versus Actual D-

flow plot. 

2.3. T-funnel Model 

In defining the polynomial model, through regression analysis, important statistics were 
compared. The best model for these inputs and outputs had an adjusted R² value of 0.3976 
and a predicted R² of 0.2279, which represents a low significance, since ideally these values 
should be close to 1 and that the relationship between the adjusted and the predicted value 
is less than 20%. Therefore, in a preliminary investigation for adjusting this model, it was found 
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that the point Std 11 Run 20, in the same way as the analysis of the D-flow model, was located 
in a distant position from the others, as can be observed in Figure 6 (a).  

In addition, the model suggested in Figure 6(b), through the Box-Cox plot, that the 95% 
confidence intervals for Lambda (λ) are between -0.95 and 0.49, with the best λ being equal 
to -0.21. Therefore, an “inverse square root” transform was recommended so that λ is within 
the 95% confidence interval. 

 

Figure 6: (a) Normal Plot; (b) Box-Cox plot. 

After the adjustments, the model that presented the best result was the linear one. In Table 
7 , the T-funnel ANOVA shows the significant model, as it has a low “p-value” (<0.0001) and 
an “F-value” of 22.81. There is only a 0.01% chance that can a high F-value occur due to noise. 

Factors 𝑋4 (s/m), 𝑋3 (w/p) and 𝑋1 (w/c), in ascending order of relevance, are the significant 
terms of the model, and dominant in relation to factor 𝑋2 (Sp/p), since that this last entry is a 
non-significant term, as it has a “p-value” above 0.05 (0.7199). The lack of fit was insignificant, 
as it presented a “p-value” of 0.9806 and an “f-value” above 0.05 (0.2809). Therefore, relative 
to pure error, the lack of fit is not significant. 

Source Sum of Squares Mean Square F-value p-value Significance 

Model 0.0414 0.0104 22.81 < 0.0001 significant 

w/c 0.0111 0.0111 24.48 < 0.0001  

Sp/p 0.0001 0.0001 0.13 0.7199  

w/p 0.0139 0.0139 30.68 < 0.0001  

s/m 0.0203 0.0203 44.68 < 0.0001  

Residual 0.0109 0.0005    

Lack of Fit 0.0056 0.0003 0.2809 0.9806 not significant 

Pure Error 0.0053 0.0011    

Cor Total 0.0523     

Table 7: ANOVA for lineal model - T-Funnel. 
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In Table 8 the R² is 79.17%, and the ratio between the adjusted R² and the predicted R² is less 
than 0.2. Also, the “Adeq Precision” has the value 17.3165, which is greater than 4, indicating 
that the signal is adequate and that it can be used to navigate the design space. 

Std. Dev. Mean C.V.% R² Ajusted R² Predicted R² Adeq Precision 

0.0213 0.2018 10.56 0.7917 0.7570 0.7203 17.3165 

Table 8: Fit statistics for T-funnel. 

The estimated T-funnel coefficients are presented in Table 9, and are considered adjustments 
around the mean response of all runs, within the 95% confidence interval. Standard errors, 
confidence intervals and the Variance Inflation Factor (VIF) are also presented. 

Factors  𝑋1, 𝑋2, 𝑋3 and 𝑋4 have VIF greater than 1.0, which indicates that these factors are 
multicollinear. It is noteworthy that values lower than 10 are tolerable. 

Factor Coefficient Estimate Standard Error 95% CI Low 95% CI High VIF 

Intercept 0.1991 0.0040 0.1909 0.2073  

w/c 0.0221 0.0045 0.0129 0.0313 1.01 

Sp/p -0.0016 0.0045 -0.0108 0.0076 1.01 

w/p 0.0247 0.0045 0.0155 0.0339 1.01 

s/m -0.0298 0.0045 -0.0390 -0.0206 1.01 

Table 9: Coefficients in Terms of Coded Factors for T-funnel. 
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Figure 7 (a) shows the normal probability plot of the residuals after being adjusted ignoring 
the point Std 11 Run 20, and performing the “inverse square root” transformation. Although 
the points are close to a straight line, they have an S shape and it is recommended that it be 
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linear or normal. 

 
Figure 7 (b) shows the Box-Cox plot with the recommended transform, and the lambda (λ) 
within the established range. 
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Figure 7 (c) shows the predicted versus actual graph, in which an inclined line is observed and 
with the points uniformly distributed around this line. Predicted and measured values vary 
between 85.12% and 130.73%. Despite the good distribution of the points, its present 
dispersions when compared with the D-flow data, for example. The location of Std 11 Run 20 
point, which was disregarded for this analysis, is shown in the graph. 
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Figure 7: (a) Normal plot of residuals T-funnel; (b) Box-Cox plot for T-funnel 
transform; and, (c) Predicted versus Actual plot for T-funnel. 

2.4. Model for Compressive Strength with 24 hours (CS24h) 

The Compressive Strength model with 24 hours (CS24h) was defined from linear regression. 
At first, the best model found was the linear one, with an adjusted R² value of 0.2979 and a 
predicted R² of 0.1193, therefore, far from 1. 

No points were observed in the graph of the normal probability of residuals that disagreed 
with the considered profile. Therefore, none of the 30 response variable data for CS24h was 
disregarded. 

ANOVA for the linear model is presented in Table 10. The “p-value” is 0.0112 (below 0.05), 
there is a 1.12% chance of an F-value occurs due to noise; and the “F-value” is 4.08, which 
implies that the model is significant. Only the term 𝑋1 (w/c) is significant, as it is the only one 
among the input variables that has a “p-value” less than 0.05. For the variables 𝑋2 (Sp/p), 𝑋3 
(w/p) and 𝑋4 (s/m) the models are insignificant, and reducing these variables can be an 
alternative to improve the model. 
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The Lack of Fit (F-value) equal to 1.74 demonstrates that the value in relation to the pure error 
is not significant. There is a 28.22% chance of a misfit due to noise. 

Source Sum of Squares Mean Square F-value p-value Significance 

Model 139.87 34.97 4.08 0.0112 significant 

w/c 128.12 128.12 14.93 0.0007  

Sp/p 1.92 1.92 0.22 0.6407  

w/p 3.96 3.96 0.46 0.5029  

s/m 5.87 5.87 0.68 0.4160  

Residual 214.48 8.58    

Lack of Fit 187.49 9.37 1.74 0.2822 not significant 

Pure Error 26.99 5.40    

Cor Total 354.36     

Table 10: ANOVA for CS24H. 

In Table 11 as already mentioned, the value of R² is 39.47% and a low value of predicted R² 
(11.93%) and adjusted R² (29.79%). However, the difference between the two is still less than 
20%, which characterizes it as a reasonable agreement. 

The signal-to-noise ratio is measured in “Adeq Precision”, which has a desirable ratio, that is, 
greater than 4, which indicates an adequate signal (7.7289). 

Std. Dev. Mean C.V.% R² Ajusted R² Predicted R² Adeq Precision 

2.93 54.98 5.33 0.3947 0.2979 0.1193 7.7289 

Table 11: Fit statistics for CS24h. 

A Table 12  presents the estimated coefficients, standard errors, 95% confidence intervals and 
VIF. The estimated CS24h coefficients are the average response fits of the runs. The VIF de  𝑋1, 
𝑋2, 𝑋3 and 𝑋4 is equal to 1.0. They are orthogonal factors and it is an acceptable result. 

Factor Coefficient Estimate Standard Error 95% CI Low 95% CI High VIF 

Intercept 54.9800 0.5348 53.88 56.08  

w/c -2.3100 0.5979 -3.54 -1.08 1.0000 

Sp/p 0.2825 0.5979 -0.95 1.51 1.0000 

w/p 0.4064 0.5979 -0.82 1.64 1.0000 

s/m -0.4946 0.5979 -1.73 0.74 1.0000 

Table 12: Coefficients in Terms of Coded Factors – CS24h. 
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The residual normal probability plot for CS24h is shown in 

 
Figure 7 (a). Although the CS24h analysis indicates an adjusted R² of 29.79%, which shows a 
low statistic, since ideally it should be close to 100%, the graph shows the 30 points very close 
to the straight line, obeying a linear pattern. Figure 8 (b) shows the residuals versus run plot 
and indicates that the student residuals are within the limit (±3.54047). However, its 
dispersion is on a downward trend and ideally it should be random. Also, one can find a bad 
behavior in points present in Figure 8 (c), in which some points are close to the line, others 
are already far away, with a tendency to be more centralized. 
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Figure 8: (a) Normal plot of Residuals CS24h; (b) Residuals versus Run plot for 
CS24h; and, (c) Predicted versus Actual plot for CS24h. 

2.5. Model for Compressive Strength with 28 days (CS28d) 

In the analysis of the results for 28-day compressive strength response model (CS28d), the 
best polynomial model was the linear one, with an adjusted R² value of 26.22% and a predicted 
R² of 8.71%. Even if the difference between these values is less than 20%, the model is 
significant, as it presents percentages far from 100%. When checking the diagnostic graphs, in 
order to find ways to adjust this model, for greater significance, the following behaviors were 
observed in Figure 9 (a), (b), (c) and (d): 
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Figure 9: (a) Predicted versus Actual plot for CS28d; (b) Cook’s Distance plot for CS28d; 
(c) Leverage versus Run plot for CS28d; e, (d) DFFITS versus Run plot for CS28d. 

In Figure 9 (a) the graph has points distributed in the center with a horizontal tendency, 
characterizing little relationship between predicted versus actual. Still, it is not possible to find 
a specific point that could be harming the sample. 

In Figure 10 (b), (c) and (d) that present Cook's Distance, Leverage versus Run and DFFITS 
versus Run, respectively, point to a common behavior: the positions in the graphs of point Std 
23, Run 27. Figure 10 (b) this point is not an outlier, however, it is close to the limit (0.710593), 
far from the others. This implies that this single point is able to influence the estimate in a 
regression model. 

Figure 10 (c), which demonstrates the leverage points, shows the student residue Std 23, Run 
27, above the limit (0.133333), and is in a position above the double of the other points. This 
behavior is also valid for Figure 10 (d), which shows the DFFITS versus Run graph, in which the 
same point (Std 23, Run 27) is outside the limits (-1, 1). DFFITS presents the difference in fits, 
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which is a useful tool for detecting influential runs. In view of the analyses, the idea of ignoring 
Std 23, Run 27 and creating a new polynomial model is reinforced. 

In Figure 9 (b), (c) and (d) that present Cook’s Distance, Leverage versus Run and DFFITS versus 
Run, respectively, its point to a common behavior: the positions in the graphs of point Std 23 
Run 27. Figure 9 (b) this point is not an outlier, however, it is close to the limit (0.710593), in 
a distant position from the others. This implies that this single point is able to influence the 
estimate in a regression model. 

Figure 9 (c) which demonstrates the leverage points, shows the student’s residual Std 23 Run 
27, above the limit (0.133333), and is in a position above the double of the other points. This 
behavior is also valid for Figure 9 (d), which shows the DFFITS versus Run graph, in which the 
same point (Std 23 Run 27) is outside the limits (-1, 1). DFFITS presents the difference in fits, 
which is a useful tool for detecting influential runs. In view of the analyses, the idea of ignoring 
Std 23, Run 27 and creating a new polynomial model is reinforced. 

After the new analysis, the linear model showed better results. The ANOVA for CS28d, present 
in Table 13, implies that the model is significant, with an “F-value” of 5.85 and a “p-value” of 
0.002 (<0.05), that is, there are 0.2% chance of a high F-value occurs due to noise. 

The significant model terms are the factors 𝑋 4 (s/m) and 𝑋 1 (w/c), respectively, in order of 
relevance. The terms 𝑋 2 (Sp/p) and 𝑋 3 (w/p) are insignificant, as they have values above 0.05. 
The lack of fit relative to pure error, with a value of 1.21, implies that it is not significant. 

Source Sum of Squares Mean Square F-value p-value Significance 

Model 160.66 40.17 5.85 0.0020 significant 

w/c 35.43 35.43 5.16 0.0323  

Sp/p 12.69 12.69 1.85 0.1865  

w/p 9.15 9.15 1.33 0.2597  

s/m 103.40 103.40 15.07 0.0007  

Residual 164.69 6.86    

Lack of Fit 135.22 7.12 1.21 0.4546 not significant 

Pure Error 29.46 5.89    

Cor Total 325.35     

Table 13: ANOVA for CS28d. 

Furthermore, there was a significant improvement in the determination coefficients for 
CS28d. In Table 14, the Predicted R² value is 0.2732 and the Adjusted R² is 0.4095, verifying a 
reasonable agreement between them, as the difference is less than 0.2. Even with coefficient 
increase, the Adjusted R² is still far from 1. 

In “Adeq. Precision”, the value is 8.9015, it has an adequate sign, because it has a desirable 
value greater than 4. Therefore, this model is suitable for navigating the design space. 

Std. Dev. Mean C.V.% R² Ajusted R² Predicted R² Adeq Precision 

2.62 105.39 2.49 0.4938 0.4095 0.2732 8.9015 

Table 14: Fit statistics for CS28d. 

Table 15 shows the estimated coefficient for each response variable, the standard error and 
the 95% confidence intervals. In addition, it presents the VIFs, being orthogonal factors (equal 
to 1), and as a rule, the VIFs are considered tolerable (< 10). 
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Factor Coefficient Estimate Standard Error 95% CI Low 95% CI High VIF 

Intercept 105.5500 0.4881 104.54 106.56  

w/c -1.2100 0.5347 -2.32 -0.11 1.0000 

Sp/p 0.7272 0.5347 -0.38 1.83 1.0000 

w/p 0.6173 0.5347 -0.49 1.72 1.0000 

s/m -2.2800 0.5878 -3.49 -1.07 1.0000 

Table 15: Coefficients in Terms of Coded Factors – CS28d. 

The plot of normal versus residuals are shown in Figure 10 (a) after point Std 23 Run 27 is 
skipped. Student residuals are close to the line, showing characteristics with a linear trend. 
The graph of Figure 10 (b), which shows the predicted versus actual relationship, when 
compared with the previous graph (without ignoring the point Std 23 Run 27) it shows an 
improvement in the distribution of the points around the line and smaller dispersions. The 
location of point Std 23 Run 27, which was disregarded, can be seen in the graph. 

 

Figure 10: (a) Normal plot of Residuals CS28d; and, (b) Predicted versus Actual plot 
for CS28d. 

2.6. Optimization of self-compacting mortars 

The experimental planning aims to optimize the mixtures in order to obtain a better efficient 
composition for a given objective. In each of the responses, a model was developed. 
Numerical optimization was carried out using the Design Expert software in order to find a 
mixture that causes less impact on the environment and costs, in addition to obtaining better 
results regarding segregation and compression strength. 

The parameters for optimization are defined as “goal” to build desirability indices. They are: 
maximize, minimize, targeted, in range and equal to. In addition, weights ranging from 0.1 to 
10 are defined, with a default value of 1. And finally, the degree of importance, which is a tool 
that serves to determine the factors that are priorities to achieve the established goals. 
Importance levels range from 1 plus (+) to 5 plus (+++++). Therefore, a set of conditions is 
randomly calculated to look for desirable results. Initially, individual objectives are combined 
and then the general desire (Myers, Montgomery, and Anderson-cook 2009). 
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The parameters defined for the optimization of self-compacting mortar, aiming to obtain 
lower environmental impacts, lower costs, reduce segregation and higher compressive 
strength are observed in Table 16: 

Name Goal Lower Limit Upper Limit Importance 

𝑋1: w/c maximize 0.841097 0.948471 5 

𝑋2: Sp/p minimize 0.0220967 0.0249176 4 

𝑋3: w/p is in range 0.501287 0.565281 3 

𝑋4: s/m maximize 0.4512 0.5088 5 

𝑌1: D-Flow is target = 328 289 367 3 

𝑌2: T-Funnel maximize 11.45 66.78 4 

𝑌3: CS24h is in range 48.2929 63.9652 3 

𝑌4: CS28d maximize 105 111.654 5 

Table 16: Defined criteria for optimizing self-compacting mortar. 

The input factor 𝑋1 (w/c) aimed to maximize its result, considering a lower water/cement ratio 
and consequently a smaller amount of cement, reducing the environmental impact from the 
cement manufacturing process and the 𝐶𝑂2 emission. In addition, reducing the amount of 
cement promotes the reduction of costs of this mixture. The degree of importance defined 
was 5. 

The goal of the variable 𝑋2 (Sp/p) was to minimize it in order to reduce costs with a 
superplasticizer additive, with a degree of importance 4. For the variable 𝑋3 (w/p) it was only 
defined that it should be between the limit intervals, because for this optimization, this factor 
is of little relevance. By maximizing the input factor 𝑋4 (s/m), it meets the same criteria as the 
input factor 𝑋1, as it increases the sand/mortar ratio, reducing costs and the environmental 
impact of the mixture, as it will have a lower percentage of cement. 

For the response variable 𝑌1 (D-Flow), an average value (328 mm) was defined as the goal, 
aiming at better responses for segregation. As for the response 𝑌2 (T-Funnel), also to avoid 
segregation, higher values are recommended, so it was maximized with a degree of 
importance 4. For the third response variable 𝑌3 (CS24h), only obeying the intervals was used 
as a criterion parameter, with degree of importance 3, bearing in mind that it is of little 
relevance to reach minimum or maximum values of strength in 24 hours for the established 
objectives. 

Finally, there is the response variable 𝑌4 (CS28d) whose optimization criterion was 
maximization, with a degree of importance 5, and a minimum limit value of 105 MPa. The 
objective was to make the mixture optimized with higher compressive strength values at 28 
days. 

For the optimization criteria defined above, 65 mixes were found that meet the targets. Table 
17 lists the 10 best mixing solutions, highlighting for number 1. The best result found for 
optimization, with a degree of accuracy of 95%, is shown in Table 18. The values found 
followed the established criteria and solution 1 is the one with the best mix from an economic 
and environmental point of view and fresh and hardened properties. 

Number w/c Sp/p w/p s/m d-flow t-funnel CS24h CS28d Desirability Significance 

1 0.902 0.023 0.561 0.464 349.443 17.819 55.193 106.922 0.428 Selected 

2 0.898 0.023 0.558 0.477 341.301 20.782 55.016 105.689 0.418  

3 0.907 0.023 0.537 0.468 341.220 21.420 54.626 106.051 0.413  
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4 0.934 0.022 0.559 0.464 353.686 16.136 53.699 105.882 0.409  

5 0.930 0.024 0.555 0.472 347.821 17.970 53.981 106.043 0.407  

6 0.928 0.023 0.538 0.464 347.133 18.770 53.873 106.147 0.399  

7 0.939 0.023 0.552 0.463 352.751 16.509 53.424 105.780 0.395  

8 0.899 0.023 0.547 0.480 336.702 23.104 54.922 105.633 0.395  

9 0.937 0.023 0.546 0.462 351.455 17.073 53.644 106.271 0.394  

10 0.900 0.023 0.521 0.467 336.488 24.386 54.751 106.018 0.393  

Table 178: 10 best blending solutions found for optimization. 

Solution 1 of 
65 Response 

Predicted Mean Predicted Median* Std Dev SE Pred 95% PI low 95% PI high 

𝑌1: D-Flow 349.4430 349.4430 8.96135 9.30649 330.2760 368.6100 

𝑌2: T-Funnel 17.4195 3.0964 3.09643 N/A 12.3651 26.3489 

𝑌3: CS24h 55.1935 55.1935 2.92905 3.04727 48.9175 61.4694 

𝑌4: CS28d 106.9220 106.9220 2.61952 2.73513 101.2770 112.5680 

Table 18: Confirmation of the best optimized result. 

3. Conclusion 

The research carried out aimed to investigate the input variables for a self-compacting mortar, 
in order to allow the models to be adapted to its properties. In addition, the mixture was 
optimized by establishing economic, environmental and fresh and hardened criteria, using the 
response surface methodology (RSM). Based on the results found, the following conclusions 
are explained: 

1. In the preliminary analyzes, the T-funnel versus D-Flow and D-Flow versus T-funnel 

ratio already showed a strong descending correlation of -0.871; 

2. The D-flow and T-funnel linear polynomial models were adequate to relate to the self-

compacting mortar; 

3. Linear polynomial models CS14h and CS28d were of moderate significance for the self-

compacting mortar. Adjustments will be needed to provide better results; 

4. For the D-Flow and T-Funnel responses, the w/p, s/m and w/c factors had the most 

significant effects; 

5. The CS24h response variable was more influenced by the w/c factor; 

6. The w/c and s/m factor were more significant for CS28d; 

7. The numerical optimization solutions showed high compliance, with good precision, 

emphasizing the efficiency of RSM for mixture optimization; 

8. The criteria defined for model optimization allowed finding solutions for the 

established objectives. 
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