Effect of Aging Heat Treatment in an Al-4008 Produced by Liquid Metal Printing
Main Article Content
Abstract
In today's world, additive manufacturing (AM) is one of the most popular technologies and has the potential to revolutionize the manufacturing industry. As one of the most recent advances in this industry, liquid metal printing has a growing value in the engineering field. This study aims to evaluate the effect of two heat treatment conditions in an Al-4008 alloy produced by this technique in the microstructure and mechanical properties. It was concluded that the heat treatment (HT) enhances the Si particle coalescence and Fe-rich intermetallic compound precipitation, increasing the sample hardness significantly (50%). Density analysis showed a slight porosity decrease with HT. Tensile tests indicated heat-treated, same-directionally pulled samples exhibited brittleness compared to as-printed ones, while HT increased both yield strength (245 MPa) and ultimate tensile strength (294 MPa).
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors grant the journal the rights to provide the article in all forms and media so the article can be used on the latest technology even after publication and ensure its long-term preservation.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).