Multimodal Hierarchical Face Recognition using Information from 2.5D Images
Main Article Content
Abstract
Facial recognition under uncontrolled acquisition environments faces major challenges that limit the deployment of real-life systems. The use of 2.5D information can be used to improve discriminative power of such systems in conditions where RGB information alone would fail. In this paper we propose a multimodal extension of a previous work, based on SIFT descriptors of RGB images, integrated with LBP information obtained from depth scans, modeled by an hierarchical framework motivated by principles of human cognition. The framework was tested on EURECOM dataset and proved that the inclusion of depth information improved significantly the results in all the tested conditions, compared to independent unimodal approaches.
Downloads
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors grant the journal the rights to provide the article in all forms and media so the article can be used on the latest technology even after publication and ensure its long-term preservation.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).