The Concept of Metal-Insulator-Metal Nanostructures as Adaptive Neural Networks
Main Article Content
Abstract
Present computer processing capabilities are becoming a restriction to meet modern technological needs. Therefore, approaches beyond the von Neumann computational architecture are imperative and the brain operation and structure are truly attractive models. Memristors are characterized by a nonlinear relationship between current history and voltage and were shown to present properties resembling those of biological synapses. Here, the use of metal-insulator-metal-based memristive devices in neural networks capable of simulating the learning and adaptation features present in mammal brains is discussed.
Downloads
Download data is not yet available.
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors grant the journal the rights to provide the article in all forms and media so the article can be used on the latest technology even after publication and ensure its long-term preservation.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).