Colorimetry-based System for Gaseous Carbon Dioxide Detection Membrane Optimization
Main Article Content
Abstract
The study of sensing materials to the detection of carbon dioxide (CO2) was achieved using p-nitrophenol (pNPh) as a colorimetric indicator. The sensing material was polymerized (NPLn), functionalized with 3-triethoxysilyl propyl isocyanate (IPTES) which sensitivity was tested in the form of a membrane as is and encapsulated in hollow silica nanoparticles. The sensing membranes were tested in a closed gas system comprising very precise flow controllers to deliver different concentrations of CO2 (vs. N2). The combination of the sensing membranes with multimode optical fibers and a dual-wavelength diode (LED) allows the measurement of the CO2 through the analysis of the induced absorbance changes with a self-referenced ratiometric scheme. The analysis of the sensing materials have shown significant changes in their chemical and physical properties and the results attest these materials with a strong potential for assessing CO2 dynamics in environmental, medical, and industrial applications.
Downloads
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors grant the journal the rights to provide the article in all forms and media so the article can be used on the latest technology even after publication and ensure its long-term preservation.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).