Titanium Ti-6Al-4V Alloy Milling by Applying Industrial Robots
Main Article Content
Abstract
Robotic machining is an alternative to manufacturing processes that combines the technologies of a high-performance machine tool with the flexibility of a 6-axis jointed arm robot. With their large working area, industrial robots are of particular interest for processing large-volume components and large structures, like aircraft components. An influencing variable, which is particularly relevant for milling processes with industrial robots are the cutting force F and the resulting dimensional deviation D. Milling tests of titanium alloys were carried out with an industrial robot and the results compared with a conventional machine tool. Due to the low thermal conductivity and high chemical reactivity of the Ti-6Al-4V alloy, heat is generated and increases the temperature in the contact region of the cutting tool/work piece. That has an impact on the cutting tool wear and increases the cutting force F, and consequently, the dimensional deviation D and the machined surface quality. The aim of the investigations is to find a suitable parameter selection and machining strategy for machining titanium alloys with minimal deviation D and an appropriate surface finish.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors grant the journal the rights to provide the article in all forms and media so the article can be used on the latest technology even after publication and ensure its long-term preservation.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).